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A B S T R A C T

Industry 4.0 is an era of smart manufacturing. Manufacturing is impossible without the use of machinery. The
majority of these machines comprise rotating components and are called rotating machines. The engineers’ top
priority is to maintain these critical machines to reduce the unplanned shutdown and increase the useful life of
machinery. Predictive maintenance is the current trend of smart maintenance, followed by most maintenance
engineers. The challenging task in predictive maintenance is to diagnose the type of fault. With Artificial
Intelligence (AI) advancement, a data-driven approach for predictive maintenance is taking a new flight
towards smart manufacturing. Several researchers have published work related to fault diagnosis in rotating
machines, mainly exploring a single type of fault. However, a consolidated review of literature that focuses
more on the ‘‘multi-fault diagnosis’’ aspect of rotating machines is lacking. There is a need for a study that
would systematically cover all the aspects right from sensor selection, data acquisition, feature extraction,
multi-sensor data fusion to the systematic review of AI techniques employed in multiple fault diagnosis. In
this regard, this paper attempts to achieve the same by implementing a systematic literature review on a Data-
driven approach for multi-fault diagnosis of Industrial Rotating Machines using the ‘‘Preferred Reporting Items
for Systematic Reviews and Meta-Analysis’’ (PRISMA) method. The PRISMA method is a collection of guidelines
for the composition and structure of systematic reviews and other meta-analyses. This paper identifies the
foundational work done in the field and gives a comparative study of different aspects related to multi-fault
diagnosis of industrial rotating machines. The paper also identifies the major challenges, research gap. It gives
solutions using recent advancements in AI in implementing multi-fault diagnosis, giving a strong base for future
research in this field.
1. Introduction

Industries are the basis of the nation’s economy. With the recent
advancement in technology, especially in Artificial Intelligence (AI),
these industries have achieved new heights by transforming into smart
factories, marking an era of the fourth industrial revolution. Smart
factories employ smart manufacturing, and the basic building block
of any manufacturing process industry is the machines. Most of the
machines in the industries comprise rotating components and are called
rotating machines (Mohanty, 2014). More precisely, the rotating ma-
chines facilitate the transfer of energy to fluids and solids or vice
versa. The rotating machine consists of the rotating part, which we
call a rotor, and the static part called a stator (Bigret, 2001). In the
process industry, a train of rotating machines is used to transport solids,
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liquids, and gases (Operations and Uptime, 2006). Process machinery
comprises a group of sub-elements (of rotating machines) that com-
bine to convert one form of energy until converted into the desired
usable form of energy. There are different sub-elements, including the
driver machines, the driven machines, the speed modifiers, the shaft,
and the coupling. The driver machines take electrical, steam, or fluid
energy and convert it into rotary power that can be used to drive
a process machine. Electric motors, turbines, reciprocating engines
(usage is very less) are examples of driver machines. Driven process
machine transports a given process fluid or solid, at a given flow and
pressure, to specific points in a process. Pumps, fans, compressors,
conveyor belts, etc., are widely used driven machines. The speed of the
driver output shaft may be increased or decreased by a speed modifier,
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Fig. 1. Representation of rotating machines.
epending on the requirement of the process machine being driven.
earboxes, sheaves, and belts are examples of rotating machines that
ork as speed modifiers. However, Variable Frequency Drive (VFD) is
lectronic equipment used as a speed modifier. A shaft is a rotating
achine element used to transmit energy from the driver to driven
achinery. The shaft on the driver side is connected to the driven side
sing coupling. Fig. 1 shows the representation of rotating machines
ith Fig. 1a (Operations and Uptime, 2006) giving the flow of the
nergy is transfer in the process of rotating machines, and Fig. 1b gives
n example of the train of rotating machines comprising an electric
otor coupled to a pump.

From the above discussion, it is evident that any manufacturing pro-
ess is incomplete without rotating machines. Therefore, it is essential
o keep such machines in healthy operating conditions by deploying
roper maintenance strategies (Gawde and Borkar, 2018). Predictive
aintenance is the current trend of smart maintenance, which most
aintenance engineers follow. The challenging task in predictive main-

enance is to diagnose the type of fault. With Artificial Intelligence
AI) advancement, a data-driven approach for predictive maintenance
s taking a new flight towards smart manufacturing. The use of Big Data
or multiple fault diagnoses will be the prime focus of the study.

.1. Significance of the study

Rotating machines is the heart of any manufacturing process, and
roper maintenance is the utmost priority of maintenance engineers.

proper maintenance strategy plays a vital role in the success of
he manufacturing industry (Silvestri et al., 2020). Fig. 2 shows the
–F Curve (Nowlan and Heap, 1978), which depicts how equipment
ails and how early identification of a failure allows time to plan
nd arrange the replacement or restoration of a failing item without

ausing a manufacturing slowdown. P denotes Potential failure (based

2

on historical data), and F denotes Functional failure (actual failure) in a
P–F Curve (Du Toit, 2014). The main aim of any maintenance engineer
is to minimize probability of failure using various maintenance strate-
gies (Biggio and Kastanis, 2020). The figure also depicts the relation
between the condition of the equipment and the cost to repair concern-
ing the time taken to implement appropriate maintenance action. With
the correct type of maintenance strategy, one can detect early failure
mode.

It is very clear from Fig. 2 that it is crucial to have an early fault
diagnosis to save the industrial economy. Digital transformation in
Industry 4.0 has made it possible to collect a massive amount of data
and effectively utilize it in fault diagnosis in Predictive Maintenance
(PdM) (Çinar et al., 2020). It will reduce the unplanned downtime and
increase the Remaining Useful Life (RUL) of the machinery (Sayyad
et al., 2021a). Several researchers have published work related to fault
diagnosis in rotating machines, mainly exploring a single type of fault.
However, if we have to take complete advantage of Big Data, it is
essential to not just focus on a single fault but to consider multiple
faults that arise in the machinery (Luwei et al., 2018). The study is
incomplete unless the AI models are generalized and detect maximum
faults in real-time industrial environments with high prediction accu-
racy (Kumar et al., 2020). Also, most of the researchers have used single
sensor data in fault diagnosis. A very few researchers have implemented
multi-sensor data fusion, proving the drastic improvement in accuracy
of diagnosis, taking into account the uncertainty of data (Jiang et al.,
2017). Hence there is a need to consider this aspect of multi-sensor data
fusion in future work. If a machine shows an unusual behavior or needs
maintenance in the present scenario, a domain expert must diagnose
the machinery’s fault (Feng et al., 2021). It shows that the research in
this field still has a long future as a full-fledged implementation of the
fault-diagnosis aspect using AI is yet to be achieved. A consolidated

literature review is needed to focus on the ‘‘multi-fault diagnosis’’
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Fig. 2. The PF Curve depicting the significance of early fault diagnosis.
Fig. 3. Research trend in fault diagnosis of rotating machines over past ten years (2011–2021).
aspect of rotating machines to give a strong foundation for future
research. There is a need for a study that would systematically cover
all the aspects right from sensor selection, data acquisition, feature
extraction, multi-sensor data fusion to the systematic review of AI
techniques employed in multiple fault diagnosis. This paper is also a
small attempt to review the aspects mentioned above from the past
research using PRISMA guidelines for systematic review.

1.2. Motivation

Artificial intelligence is an ocean of tremendous opportunities. The
application of AI techniques to solve real-life problems is the new trend
of future research. Being closely associated with the problems faced
by maintenance engineers, finding a solution to the same utilizing AI
techniques is the primary motivation behind the study. Fault detection
is pretty simple by setting alarm limits, while a correct fault diagnosis is
equally complex. With the advancements in Big data analysis using AI
models, it is possible to tackle this problem to a great extent. However,
most research focuses on the single type of fault, a preliminary study
3

that needs further research. Also, the researchers have focussed on
single sensor data, which again reduces the credibility of research as the
health of machinery cannot be solely predicted based on a single sensor
parameter. It is imperative to evaluate multiple parameters such as
vibration, temperature, current, AE, etc., to get the complete condition
of the machinery. To achieve this, multi-sensor data for fault diagnosis
needs more exploration. The continuity in research lacks that would
overcome the disadvantages of the previous work done. To explore
the possible ways to solve the above problems, there is a need for
an extensive literature survey. There is a need for study covering all
aspects of multi-fault diagnosis, including big data acquisition, data
processing, multi-sensor data fusion, and AI techniques that the re-
searchers have already implemented. Such a study would give the gap
in research and, in turn, motivate future research in the field. A very
little encyclopedic research covered all the aforementioned aspects,
which motivated the authors to explore more in this area. Fig. 3 shows
a trend in research in the past ten years extracted from the Scopus
database in the field of multi-fault diagnosis in rotating machines. It
is clear from the figure that the research is developing in this field,
begging researchers’ significant attention every year.
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1.3. Terms and terminology

Following are the terms frequently used in fault-diagnosis of Indus-
trial rotating machines.

• Industry 4.0: Industry 4.0 (the fourth industrial revolution) is the
current automation trend, a fusion of cyber–physical systems, the
Internet of things, and cloud computing (Xu et al., 2018).

• Predictive maintenance (PdM): In predictive maintenance, engi-
neers try to predict the failures of machines based on certain
conditions prevailing in the machinery.

• Big-Data Analysis: Big data analytics uses advanced analytic tech-
niques against vast, diverse datasets that include structured, semi-
structured, and unstructured data from different sources and in
different sizes, from terabytes to zettabytes.

• Artificial Intelligence (AI): A subset of big data where we simulate
human intelligence on machines.

• Data-driven approach: A data-driven approach gives decisions
based on complex data analysis and interpretation rather than
observation.

• Multi-sensor data fusion: Sensor fusion is the process of com-
bining sensory data or data derived from disparate sources such
that the resulting information has less uncertainty than would be
possible when these sources used individually.

• Multi-fault diagnosis: Diagnosing multiple faults in the machinery
based on data processing and analysis.

• Rotating machines: Rotating machines are generally used in the
oil and gas and process industries to describe mechanical compo-
nents that use kinetic energy to move fluids, gases, and other pro-
cess materials.

• Maintenance strategy: A maintenance strategy defines the rules
for the sequence of planned maintenance work.

1.4. Evolution of maintenance strategies:

Rotating machinery is a machine with a rotating component that
transfers energy to a fluid, solid, or vice versa. In the first section
of the introduction, we have discussed the different types of rotating
machines, including the driver and the driven rotating machines. We
have also seen the significance of these machines for the manufacturing
process. Hence, maintenance engineers’ most important task is to keep
them in a healthy working condition. Let us understand the various
maintenance philosophies that have evolved over the years.

First on the list is the Run to failure or breakdown maintenance
philosophy. The machine runs in its prevailing condition without any
check-up, and maintenance will be carried out only after breakdown
or failure. It is also often referred to as reactive or corrective mainte-
nance (Mohanty, 2014). The temporary advantage is that it needs the
least planning and hence no initial maintenance costs. On the other
hand, it is expensive as the engineer waits until the end and acts based
on the breakdown. Breakdown maintenance is an age-old technique
but still followed in some machines, which are not so critical to the
functioning of the plant. Demand for more complex machines due to
increased rate of productivity made breakdown maintenance quite a
lot expensive. At this point, another frequently used philosophy called
preventive maintenance was introduced (Mohanty, 2014; Lee et al.,
2015). Few commonly used synonyms for preventive maintenance are
scheduled, planned, and sometimes calendar-based maintenance. As
the name again suggests, the engineers try to prevent failure by periodic
or planned maintenance activities. It is not wrong from a machinery
health perspective, but it becomes costly considering the resource
(time and money) consumption. Hence preventive maintenance is also
avoided as it results in increased maintenance costs though ensuring
excellent and stable machinery health. So, the engineers thought of
changing this calendar-based maintenance to condition-based main-

tenance, which is called Condition Monitoring. Condition monitoring

4

(CM) is the technique of continuously monitoring a machine’s condition
parameter (vibration, temperature, etc.) to detect a substantial change
that might indicate a growing defect.

In the present era of Industry 4.0, engineers came up with another
logical approach: the philosophy of predictive maintenance (Okoh
et al., 2017). Predictive Maintenance is based on Condition Monitoring,
abnormality detection, and AI algorithms. It integrates predictive mod-
els that can estimate the remaining machine runtime left or diagnose
the type of fault in machinery according to detected abnormalities. This
approach uses a wide range of tools, such as statistical analyses and
Machine Learning to predict the state of the equipment. The evolution
of Maintenance strategies is as shown in Fig. 4 (Sayyad et al., 2021a;
Çinar et al., 2020). Following are some applications of Predictive
Maintenance:

All types of Industrial plants: Fans, pumps, electric motors, gearbox,
etc.

Pulp & Paper: blowers, belts for conveyors, chippers, refiners, pressure
screens, screw conveyors, agitators, nip monitors, felt rollers, etc.

Iron & Steel: Equipment for handling raw materials, conveyor belts,
ship unloaders, galvanization facilities, cranes, rolling mills, pumps,
fans, gearboxes, and other devices are also included.

Automotive: Presses and transfer presses, as well as wind tunnels, air
handling systems, and pumps in paint factories, etc.

Cement: Crushers, gearboxes, conveyor belts, separators, fans, raw
mills, ball mills, elevators, and blowers.

Power generation plants: gas turbines, steam turbines, water pumps,
etc.

1.5. Multi-fault diagnosis in rotating machines

Manufacturing process machines, especially the rotating machines,
work 24 × 7, resulting in mishandling or wear and tear due to pro-
longed use leading to different faults in them. The different components
of rotating machines possess different types of faults. These faults are
broadly classified at three levels: Component-level faults, System-level
faults, and Interrelated faults. Component level faults include the faults
related to bearing, shaft, pulley, etc. For example, Bearing is a compo-
nent that is considered the heart of rotating machines that can have
faults like inner race faults, outer race faults, rolling element faults,
etc. Similarly, the shaft also is a component that can possess fault like
misalignment, rotors in the rotating machines can have unbalance type
of fault, and so on. Fig. 5 summarizes different types of component-level
faults that can arise the rotating machinery. System-level faults include
the faults of the overall system to be monitored. Interrelated faults
include the additive faults (addition of different faults due to multiple
components, e.g., Unbalance and Misalignment) and multiplicative
faults (multiplication of different fault types in a single component,
e.g., shaft bent and shaft crack). Additive faults can be better diagnosed
as compared to multiplicative faults.

Many of the completed papers and models have diagnosed a single
target fault. In today’s era of big data, the single label system ignores
the interrelationship of different fault types, making it difficult to
accurately determine the location, type, and degree of mechanical
failure (Zhao et al., 2020c). Sometimes one fault can give rise to other
faults. A combination of different faults is also possible at the same
time (Li and Liang, 2018). Considering this aspect, a proposed model
for fault detection is valid or is deployable in real-life situations only
if it can detect multiple faults (multi-faults) and not just one fault,
which is seen in most of the research published. Multi-sensor data
fusion (Jiang et al., 2017) also needs to be used to achieve multi-fault
diagnosis with high accuracy. The key to accurate fault diagnosis is in
identifying and separating the fault characteristics.
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Fig. 4. Evolution of maintenance strategies.
.6. Prior research

The systematic literature review aims at answering the research
uestions by critically investigating the available research publications.
owever, as per the articles published related to multi-fault diagnosis
f industrial rotating machines, very few papers have done a systematic
iterature review. Table 1 gives the comparative analysis of different
eview papers related to fault diagnosis in rotating machines. The table
s so formulated that it compares the review papers published with
ifferent aspects. The questions are as stated below:

i Are the review papers related to multi-fault diagnosis of rotating
machines?

ii Have the authors discussed sensor selection and multi-sensor
data fusion?

iii Is there a discussion on where to get data from or how to acquire
data?

iv How to extract features and do signal processing?
v What are the different AI Approaches for diagnosis?

vi What are the major challenges and future scope in this field?

A total of five papers have done a systematic literature review
elated to multi-fault diagnosis of rotating machines (Nath et al., 2021;
undewar and Kane, 2021; Li et al., 2017; Jardine et al., 2006; Wang
t al., 2017), out of which Nath et al. (2021), Li et al. (2017), Jar-
ine et al. (2006) have discussed multi-sensor data fusion. It is also
een that almost all the papers (Nath et al., 2021; Gundewar and
ane, 2021; Wei et al., 2019; Li et al., 2017; Jardine et al., 2006;
ontero Jimenez et al., 2020; Pech et al., 2021; Wang et al., 2017;

ahle et al., 2020; Li et al., 2019) have discussed in detail Artificial
ntelligence techniques and models, the challenges in implementing
ccurate fault diagnosis, and what is the future scope based on the
5

survey. Most of the authors have also discussed the different approaches
for fault detection: the statistical approach, the data-driven approach,
and the hybrid approach. However, very little importance is given to
the equally vital questions like what sensors(s) to use, how to acquire
data, how to process the data, with what features to be extracted?
All the empty fields in the table also need to be addressed as the
proper selection of methods/technology is the key to accurate fault
diagnosis. For instance, selecting multiple sensors instead of single
sensors increases fault prediction accuracy (Jiang et al., 2017). Based
on this prior research, the authors of this paper have tried to answer all
the missed questions and remained unanswered from Table 1 to give
a comprehensive review related to multi-fault diagnosis in Rotating
machines.

1.7. Technology focus and evolution time-line for Machine Health Monitor-
ing

All technologies are created with a specific goal in mind. Search
engines, for example, were built to sort through the vast amounts of
data available on the internet. With each new upgrade, current tech-
nologies are combined to create something superior to what was before
used. The list goes on and on. It is no surprise that many people have
struggled to keep up with the rapid pace of technological advancement.
To be fair, the scope of technology is so vast that condensing it all into
a single section is impossible. Fig. 6 (Feldmann et al., 2018) shows the
evolution in technology related to fault diagnosis in industrial rotating
machines. The evolution is demonstrated concerning sensor technology,
data and signal processing, condition monitoring & diagnosis, and
maintenance strategies in the past years and the near future.
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Table 1
Comparative analysis of review papers related to fault/multi-fault diagnosis of industrial rotating machines.
Table 2
Research goals.

Sr. No. Research question Discussion

1 What are the different approaches employed
to achieve multi-fault diagnosis under
Predictive Maintenance (PdM) for rotating
machines in Industry?

This section gives a comparative analysis
of different PdM approaches discussing
the advantages and disadvantages of
each approach.

1 What are the available data sources for
data-driven PdM? How to select the
appropriate sensors for data collection?

Discussion related to online datasets and
data collection on test setup is discussed
along with Different sensors
explanations.

2 What are the different data acquisition
methods? What are the data validation
techniques?

Critical points for data acquisition and
validation techniques are discussed.

3 What are the different signal processing
techniques?

Feature extraction and the types for
signal processing are discussed.

4 What are the approaches to achieve
Information fusion or multi-sensor data
fusion?

Multi-sensor data fusion is discussed in
detail.

5 How to implement AI models for
multi-fault detection?

A data-driven and a hybrid approach are
discussed for PdM.
1.8. Research goal

The presented Systematic literature review critically analyzes exist-
ing studies on the multi-fault diagnosis of industrial rotating machines
using PRISMA guidelines. The literature review is achieved with the
help of the critical questions formulated in Table 2. The table explains
the research questions along with the discussion related to the question.
The authors believe that the answers to the questions in the table will
give a solid foundation to the upcoming research in the field.
6

1.9. Contributions of the study

The SLR’s primary purpose is to conduct a critical study of existing
current methodologies to implement multi-fault diagnosis in industrial
rotating machines to find solutions to the research question posed
in Table 2 using PRISMA guidelines. From this analysis, the following
are our significant contributions to the field:

The authors have tried to explain all the aspects needed to imple-
ment Multi-fault diagnosis in Rotating machines. The paper covers all
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Fig. 5. General component-level faults in rotating machines.
he significant reviews on data sources from online datasets to building
he test setup. The authors have also focused on sensor types and sensor
election. The paper has covered data acquisition details, including the
ardware and the software. Signal processing is studied in detail with
ifferent features, including the time domain, frequency domain, and
ime–frequency domain features. The Paper also has briefed the aspects
f multi-sensor data fusion, explaining the data level fusion, feature
evel fusion, and decision level fusion. The data-driven approach for
redictive maintenance using different AI algorithms, the platforms to
mplement them are all systematically covered. Finally, the paper’s
rimary focus is in conclusion, which gives the research gap and
rospects that would guide future researchers in the field.

.10. Paper organization

The paper organization is shown in Fig. 7. The paper has eight
ain sections: introduction, research methodology, review results, dis-

ussion, Challenges and limitations, future scope, and conclusion. The
irst section is the introduction explains the rotating machines, the
ignificance of the study, the motivation behind the study, the terminol-
gy used, the evolution of maintenance strategy, multi-fault diagnosis,
rior research, technology focus and evolution timeline for multi-fault

iagnosis, research goal and contribution of the study. Section 2 is

7

the research methodology that explains the method used for PRISMA’s
systematic literature review. After the methodology comes the re-
sults Section 3, which is the paper’s core that answers significant
questions related to the multi-fault diagnosis in industrial rotating
machines as formulated in Table 2. Next, we discuss the outcome of
the survey in Section 4, followed by the challenges and limitations.
One more important section in the paper is Section 5 which gives
recommendations for future work with the research gap. Finally, we
conclude the paper in Section 6, followed by references.

2. Research methodology

The procedures or strategies used to find, select, process, and ana-
lyze information about a topic are referred to as research methodology.
A strategic review is carried out in this paper using the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines (Moher et al., 2009; Page et al., 2021). PRISMA is a set of
guidelines for the structure and composition of systematic reviews and
other data-driven meta-analyses. The systematic review presented in
this paper has taken the PRISMA checklist table (Page et al., 2021),
which has 27 items to be considered while using the PRISMA method
for systematic review. This method comprises three steps: framing

research questions, the search stage, and the standards for inclusion
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Fig. 6. Technology focus and evolution time-line for machine health monitoring.
Table 3
Keyword selection.

Parameter Meaning Keywords used

Population It is an Application area ‘‘Rotating Machines’’ OR
‘‘Bearings’’

Intervention It is the software methodology ‘‘Artificial Intelligence’’ OR
‘‘Machine learning’’ OR ‘‘Deep
Learning’’ OR ‘‘multi-sensor data
fusion’’ OR ‘‘Multivariate.’’

Outcome It should relate to factors of importance to
practitioners such as improved reliability,
reduced production costs, and reduced time
to market

‘‘multi fault diagnosis’’ OR ‘‘Fault
diagnosis’’ OR ‘‘multiple faults’’
OR ‘‘Fault detection’’

Context It is the context in which the
intervention is delivered

‘‘Rotating machines’’ OR
‘‘bearings’’
and exclusion of research papers (Moher et al., 2009). The details of
these three stages are explained below.

The first stage consists of formulating research questions which
were shown in Table 2 earlier. The quality of research depends
mainly on the research questions framed. Research questions guide us
to explore different aspects of the research systematically. The second
stage is the search for articles which starts with the identification
of a database for articles. In this study, Scopus and Web Of Science
(WOS) are used as the database for article selection. In this stage,
Search fields are defined concerning the article title, abstract, and
8

keywords. Table 3 shows the selection procedure for keywords based
on the PIOC (Population, Intervention, Outcome, Context) approach
published by Kitchenham (Budgen and Brereton, 2006). The final set of
keywords used is: (‘‘Rotating Machines’’ OR ‘‘Bearings’’) AND (‘‘multi
sensor data fusion’’ OR ‘‘Multivariate’’ OR ‘‘multi fault diagnosis’’ OR
‘‘multiple faults’’).

The third and final stage is to create protocols for assessing the
technical and scientific articles that these searches have generated
from Scopus and WOS databases to keep only those most relevant
articles to the research theme. The third stage is explained in detail in
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Fig. 7. Paper organization.
the following subsection, which mainly includes the inclusion criteria,
exclusion criteria, quality assessment criteria, and their use for selecting
or rejecting the paper.

2.1. Inclusion and exclusion criteria

A list of inclusion criteria for research paper selection and exclusion
criteria for research paper rejection is applied to choose relevant re-
search studies for systematic review. After applying the keyword query
search in Scopus and WOS, these criteria are applied to the articles after
the second stage. Inclusion and exclusion criteria applied are as shown
in Table 4.

Out of all these criteria mentioned in Table 4, the most important
criterion is to have the articles related to the research theme. To achieve
this, three-stage assessment criteria applied are:

• Abstract-based Assessment: This includes reading the abstract
to check whether the article is discussing our research theme.
An abstract that matches at least 40% of the research theme is
selected for further assessment: the full text-based assessment.

• Full text-based Assessment: This includes a complete reading of
the article. Articles that match the research themes are selected,
and those that do not match the research theme are rejected. The
remaining articles go through the quality assessment.
9

• Quality-based Assessment: This criterion increases the quality of
the literature review. To achieve this, quality assessment criteria
are as discussed below.

2.2. Quality assessment criteria

The quality assessment is based on the following four criteria: The
articles that do not meet these criteria are rejected.
C1: Is the paper discussing multi-fault diagnosis in Industrial Rotating
Machines?
C2: Is the paper discussing data collection and related topics like sensor
selection and sensor data fusion?
C3: Is the paper discussing different feature extraction and signal
processing methods?
C4: Is the paper discussing the AI techniques related to fault diagnosis
in rotating machines?

The pictorial explanation of the Systematic Literature Review pro-
cess regarding PRISMA guidelines is shown in Fig. 8.

2.3. Systematic review implementation

The following main steps were used to select appropriate papers

for this review. The Systematic review flow diagram using PRISMA
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Table 4
Inclusion and Exclusion criteria.

Sr. No. Inclusion criteria

1. Articles should be published between 2011 to 2021.
2. Articles should meet at least one term related to the research theme.
3. Articles should be either published or in the process of publishing in Journals.
4. Articles should give answers to the research questions. Therefore, the title,

abstract, and full-text reading are done to achieve this criterion.

Exclusion criteria

1. Non-English Literature.
2. Duplicate articles.
3. Articles with non-availability of full text.
4. Articles not relevant to Fault Detection in Industrial Rotating machines.
Fig. 8. Systematic literature review process.
uidelines, as shown in Fig. 8, depicts the steps of recognition, screen-
ng, eligibility, and inclusion. Fig. 9 depicts the systematic search
trategy implemented. After formulating the research questions and the
eywords for a search query, the next step is to select the database.
copus and WOS were selected as the database, where initial search
esults were 2091 articles from Scopus and 261 articles from WOS.
he next step was to implement the inclusion and exclusion criteria
s discussed in Table 4. Accordingly, articles from 2011 to 2021 were
elected. Also, articles in the English language were selected related
o Engineering and computer science domain areas. Also, a filter was
pplied to select article-type documents and remove the documents
rom conference proceedings, review papers, etc. 116 documents from

OS and 1845 documents from Scopus were removed, and 391 articles
ere selected. The next step was to remove the duplicates. 97 duplicate
rticles were removed, leaving 294 total articles. The next stage was
o apply a filter based on reading the titles of the articles, reading
he abstract, and checking the scientific recognition of the articles.
92 misaligned articles were deleted, leading to 102 filtered articles.
lso, it is essential to remove unavailable articles (full text). The final

tep is to read the whole article and discard the misaligned ones. 34

10
unavailable and misaligned articles were deleted. The final portfolio
of articles comprised 68 closely aligned articles. This entire process is
shown in Fig. 9.

3. Review results

This section summarizes the findings of our systematic review pro-
cess. It answers the research questions formulated in Table 2 based on
the review process results conducted using PRISMA guidelines. Here is
the evaluation and summary of the papers.

3.1. RQ1. What are the different approaches employed to achieve multi-
fault diagnosis under Predictive Maintenance (PdM) for rotating machines
in Industry?

Predictive maintenance (PdM) is a type of condition-based main-
tenance that monitors the condition of assets using sensor devices.
These sensor devices supply data in real-time, which is used to predict
faults using AI, and intimate when the asset will require maintenance
and prevent equipment failure. Specific widely used parameters and
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Fig. 9. Implementation of systematic literature review process.
methods (Mohanty, 2014) to detect the fault and predict the condi-
tion of Industrial rotating machines are Vibration analysis (Khadersab
and Shivakumar, 2018), Motor Current Signature Analysis (Lee et al.,
2015), Temperature analysis, Magnetic chip detectors (Tandon and
Parey, 2006), Infrared Thermography, Acoustic Emission (Tandon and
Parey, 2006), Airborne Ultrasound, Lubrication analysis, etc. A combi-
nation of these methods improves the accuracy of analysis to predict
the faults. Fig. 10 (Gawde et al., 2022; AlShorman et al., 2020) depicts
analysis of the different techniques used in condition monitoring.

The PdM approach is classified into three major categories: Physics-
based Approach, Knowledge-based Approach, and Data-Driven Ap-
proach (Liao and Köttig, 2014; Valliani et al., 2019; Okoh et al., 2017).
These approaches are summarized in Fig. 11 (Sayyad et al., 2021b).
The knowledge-based approach (Liao and Köttig, 2014; Okoh et al.,
2017) combines field experience and computational knowledge from
domain experts and sets rules to interpret the faults. The advantage
of this approach is that it requires less information and it does not
require a mathematical model. However, it is challenging to implement
it without historical data and domain expertise. Expert systems and
fuzzy logic approaches are two examples of experience-based models
that rely heavily on domain knowledge. Physics-based models (Zhao
et al., 2013) are methods that use knowledge of a system’s failure
mechanisms (for example, unbalance growth) to create a mathemat-
ical equation model for the system’s degradation process. The main
advantage of this approach is that it does not require collecting a lot
of data, and it can be easily validated. Extrapolation is also easily
possible. However, at the same time, it is not suitable for complex
processes or machines and requires expert knowledge. Also, considering
all degradation mechanisms is a challenging task. These physics-based
models include the Finite Element Model (FEM), Kalman filter (KF),
and Particle filter (PF), which all rely heavily on mathematical models.
11
Data-driven models, the most widely used approach, depend highly
on big data and analysis. The Analysis allows us to predict the system’s
condition or state or match comparable examples in the set of past
experiences. The advantage of this approach is that it does not re-
quire a separate performance degradation process; however, it requires
extensive data, and the accuracy depends highly on the algorithm’s
training. A data-driven approach (Shao et al., 2017; Jia et al., 2016;
Udmale and Singh, 2019; Janssens et al., 2016; Jablon et al., 2020) is
currently the trend attracting much attention of researchers. It mainly
includes Artificial Intelligence models. Using different AI Algorithms,
viz., Machine learning, deep learning is employed to build these mod-
els. Another effective and emerging approach that anchors the benefits
of various currently available prognostics models is the hybrid ap-
proach (Swanson, 2001; Liu et al., 2012; Peel, 2008; Celaya et al.,
2014). It combines different approaches (knowledge-based, physics-
based, and data-driven) that result in a hybrid model with better
predicting ability.

3.2. RQ2. What are the available data sources? How to select the appro-
priate sensors for data collection?

Condition monitoring and fault diagnostic research for rotating
machines are critical for predictive maintenance, optimal device op-
eration, and workpiece quality. Researchers are concentrating their
efforts on two areas to increase this diagnostic accuracy: advanced
signal processing technologies and artificial intelligence technology.
The dilemma that emerges with the use and development of these new
methods and techniques is that they have their benefits and drawbacks
and can only be used in specific circumstances. As a result, the hybrid
intelligent fault diagnostic technique has been extensively researched in
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Fig. 10. Condition monitoring techniques.
which multiple sophisticated signal processing methods and artificial
intelligence approaches are used simultaneously. However, in most
diagnostic systems, just one type of information (such as vibration
information) is employed (Vargas-Machuca et al., 2020; Safizadeh and
Latifi, 2014), resulting in inadequate machinery information, partic-
ularly in sophisticated systems. The lack of information even leads
to misdiagnosis. Also, the extracted features are focused on a single
domain, and features of other domains are ignored. Therefore, the
diagnosis model must be based on multi-dimensional and multi-level
information or data sources (Yan et al., 2016). When we think of
Information or data source, there are three main aspects to it. One is the
machinery/test setup on which the data is collected, the second is the
sensors used for data collection, and the third is how to check the data
validity. Let us analyze the different aspects implemented by different
researchers.

3.2.1. Online data source
The data can be achieved in two ways. The first uses an online

dataset, and the second uses a test setup to collect data using sen-
sors. There are various online platforms available for online datasets.
The most widely used dataset is provided by Case Western Reserve
University (Neupane and Seok, 2020; Anon, 2018b). Ball-bearing test
data for both normal and defective bearings are available on this page.
Experiments were carried out with a 2 hp Reliance Electric motor, with
acceleration data collected close and far from the motor bearings. The
precise test settings of the motor and the bearing defect status for each
experiment have been meticulously documented on these web pages.
Electro-discharge machining was used to seed defects in motor bearings
(EDM). Faults with diameters ranging from 0.007 to 0.040 inches were
introduced at the inner raceway, rolling element (i.e., ball), and outer
raceway individually. The test motor’s faulty bearings were replaced,
and vibration data was taken for motor loads ranging from 0 to 3
horsepower. The ‘‘FEMTO Dataset (Nectoux et al., 2012c)’’ is another
popular dataset for estimating a bearing’s remaining usable life (RUL),
12
which allows researchers to evaluate novel methods for bearing RUL
prediction (Nectoux et al., 2012b). The FEMTO-ST2 institute designed
and built PRONOSTIA, a platform for testing and verifying bearing fault
detection, diagnostic, and prognostic techniques. ?One more dataset is
the IMS bearing dataset (Lee et al., 2019), generated by the NSFI/UCR
Center for Intelligent Maintenance Systems (IMS) with support from
Rexnord Corp. Unlike other datasets, which intentionally induce bear-
ing defects by scratching or drilling the bearing surface or generating
bearing faults by applying a shaft current for accelerated life testing, the
IMS dataset provides a comprehensive natural bearing defect history
record. The bearing is driven for 30 days in a row at a constant
speed of 2000 rpm for 30 days (Lee et al., 2019). Another essential
online dataset collection is available at NASA Prognostic Centre of
Excellence (Iqbal et al., 2019; Lee et al., 2007). The Prognostics Data
Repository collects datasets donated by universities, government orga-
nizations, and businesses. The data repository is dedicated to prognostic
datasets, that is, datasets that may be utilized to create prognostic
algorithms. Typically, these are time-series data from a nominal state to
a failing state. The bearing dataset available on NASA PCoE is provided
by the Center for Intelligent Maintenance Systems (IMS) (Lee et al.,
2019), University of Cincinnati. NASA PCoE also has one more bearing
dataset that is ‘‘FEMTO Dataset (Nectoux et al., 2012c)’’ discussed
earlier. Another dataset available online is by the Society for Machinery
Failure Prevention Technology (MFPT) (Anon, 2012), wherein they
provide the Condition Based Maintenance Fault Database whose objec-
tive is to give multiple datasets of known good and faulty bearing and
gear conditions. This dataset is being made publicly available, along
with sample processing code, hoping that researchers and CBM practi-
tioners would enhance the approaches and, as a result, develop CBM
systems more quickly. One more platform that provides online datasets
is Mendeley data (Huang and Baddour, 2018, 2019) which contains
vibration signals collected from bearings of different health conditions
under time-varying rotational speed conditions. There are 60 datasets
in total in this. Next is IEEE DataPort (Li, 2022), a valuable and easily
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Fig. 11. Approaches to implement predictive maintenance.
accessible data platform that enables users to store, search, access,
and manage standard datasets (Sayyad et al., 2022). Another bearing
dataset (Kimotho et al., 2016) from Paderborn University comprises
synchronous measurements of motor current and vibration signals, al-
lowing multi-physics models to be verified and sensor fusion of various
signals to improve bearing fault detection accuracy. Both stator current
and vibration signals are measured with a high resolution, and a high
sampling rate and experiments are performed on 26 damaged bearings
and 6 undamaged (healthy) ones. Also, one more online dataset is
composed of 1951 multivariate time-series acquired by sensors on
SpectraQuest’s Machinery Fault Simulator (MFS) Alignment-Balance-
Vibration (ABVT) (Anon, 0000a). It comprises six different simulated
states: normal function, imbalance fault, horizontal and vertical mis-
alignment faults and, inner and outer bearing faults. Table 5 (Zhang
13
et al., 2020) is a summary of all the available online datasets discussed
above.

Having access to the online datasets gives monetary benefits as less
expense is incurred in developing own test rig. Also, it saves time
in making and designing a test setup. However, in the long run, it
does not give data freedom. The test setups available online are for
fixed conditions and a particular type of fault. If the researchers have
to get more data for varied conditions, it is not possible. It can lead
to incomplete diagnosis or misdiagnosis. Also, the datasets available
online are mostly related to bearing faults. As a result, other significant
faults in rotating machines are ignored, and multi-fault diagnosis is
impossible. Also, one should check the authenticity of the data before
using it in any project.
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Table 5
Summary of available online dataset for fault diagnosis of rotating machines.

Dataset Sensor type No. of Sampling Fault Type of fault Motor Labeled Load
sensors frequency generation Speed data

CWRU
(Anon,
2018b)

Accelerometer 2 12 & 48 Khz Artificial (Single
point faults
using
electro-discharge
machining)

Bearing 1797–1720 Yes 0–3 hp

IMS (Lee
et al., 2019)

Accelerometer 2 20 KHz Natural Bearing 2000 Partially labeled 6000 lbs

MFPT (Anon,
2012)

Not specified – 97k SPS & 48k SPS Natural Bearing – Yes 270 & 300 lbs

MAFAULDA
(Anon,
0000a)

Accelerometer,
tachometer,
microphone

4, 1 & 1 50 kHz Artificial
(Induced
unbalance and
misalignment)

Bearing,
unbalance,
misalignment

700–3600 Yes –

Mendeley
Data (Huang
and Baddour,
2019)

Accelerome-
ter, encoder
for speed

1&1 200 kHz Artificial (not
mentioned)

Bearing – Yes –

FEMTO
(Nectoux
et al., 2012c)
Pronostia
(Nectoux
et al., 2012a)

Accelerome-
ter,
thermocouple

2 & 1 25.6 KHz Natural Bearing – No 4000N

Paderborn
University
(Kimotho
et al., 2016)

Accelerometer 2 20 kHz Natural Bearing 1500 & 900 Yes 0.7 & 0.1 Nm

IEEE Data
Port (Li,
2022)

This platform is a collection of datasets of different experiments conducted by different sources.

NASA PCoE
(Lee et al.,
2007)

This platform is a collection of datasets of different experiments conducted by different sources.
3.2.2. Offline data source using test setup
The online datasets, as discussed above, have their advantages as

well as disadvantages. However, the biggest drawback is that one
cannot study other faults in rotating machines using the available
datasets. So though it might be a costly affair, indeed, the best option
is to set up a test rig and collect data. Many researchers (Safizadeh
and Latifi, 2014; Safizadeh and Golmohammadi, 2020; Su et al., 2015)
opted for this option and successfully proved the results. So again, there
are two options for the setup: design the test rig (Safizadeh and Golmo-
hammadi, 2020) or buy the test rig online. Test setups by SpectraQuest,
Inc. (Spectra Quest Inc, 0000) are widely used by most researchers (Su
et al., 2015). Tyrannus Innovative Engineering & Research Academy is
another platform that provides machinery fault simulators (TIERA Pvt
Ltd, 0000). Collection of data should be ideally carried out on the real
Industrial rotating machines. However, due to industrial protocols and
uncontrollable conditions on the site, it is impossible to collect data
directly from the Industrial environment. Hence the researchers came
up with the machinery fault simulator model (Spectra Quest Inc, 0000).
The model may have a different set of combinations of components, but
what is shared is that there are two types of components: the driver
and the driven type of rotating components that resemble the real-time
industrial rotating machine behavior.

3.2.3. Sensor types and selection criteria
After setting up the test setup, knowing what type of sensors can

be used for data collection is crucial (Hanly, 0000). Many sensors are
available with different specifications, sensitivity, ranges, functions,
applications, etc. Therefore, one needs to correctly choose the sensors
considering different factors, as the sensors being the data collectors
are the basis of the diagnosis (Guesmi et al., 2015). Sensor selection

begins with an awareness of a machine’s probable failure modes and
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the related warning indications. Unbalance, bearing damage, cavitation
(pumps), increased machine vibration levels, increased temperature
of mechanical parts, loss or decrease of lubricant flow, and cooling
water flow are typical warning signals in rotating machinery (Safizadeh
and Latifi, 2014). Each of these warning signs can be analyzed and
monitored using an appropriate sensor (Murphy, 2020). In this part,
the sensors most often employed to identify problems in rotating ma-
chines (Kuntoğlu et al., 2021) at the earliest possible time, notably
accelerometers and microphones, are discussed.

• Accelerometer: Accelerometers (Safizadeh and Latifi, 2014), as
the name indicates, measure acceleration levels, typically ex-
pressed with the sign g (equivalent to gravity’s acceleration, 9.81
m/s2). They are installed directly on the surface of (or within)
the rotating machine near to bearings. Velocity or displacement
may be more critical than absolute acceleration levels for specific
applications, although this may be determined by integrating the
acceleration data. Accelerometers are widely used in fault detec-
tion of rotating machines as they convey considerable information
about machinery health (He et al., 2021b; Zhou et al., 2018;
He et al., 2021c). A general rise in machine vibration is de-
tected by basic vibration sensors, suggesting a potential machine
problem. To detect faults with specific machine components like
rolling element bearings or fan blades, more advanced sensors
employ FFT (Fast Fourier Transform) signal processing to look
at sensor data in the frequency domain (Kumar and Tiwari,
2021). Vibration sensors are classified into several categories, and
one should be aware of the distinctions between them. Piezo-
electric devices (Safizadeh and Latifi, 2014) rely on variations
in electric current caused by movement. They frequently have a

wide frequency response, high sensitivity, and low noise levels,
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although costly. Because piezoelectric accelerometers have been
around for a long time, several types are available for various
purposes. Micro-electro-mechanical systems, or MEMS (Maruthi
and Hegde, 2016), are tiny sensors frequently employed in IoT
devices to detect vibrations. These sensors are frequently less
expensive than Piezoelectric equivalents. An accelerometer may
measure vibration in up to three directions. Movement from side
to side, forward/backward, and up/down can all be perceived as
vibrations. It always uses a 3-Axis sensor rather than a 1-Axis
sensor since they are highly correlated, making it simpler to spot
potential failures (Qian et al., 2019).

• Eddy current sensor: Non-contact Eddy-Current sensors
(Safizadeh and Latifi, 2014) indicate a conductive component’s
position and/or change of position. Magnetic fields are used to
operate these sensors. The sensor is equipped with a probe that
generates an alternating current at its tip. Eddy currents are tiny
currents created by the alternating current in the component we
are measuring.

• Temperature Sensor: Temperature sensors (Lopez-Perez and
Antonino-Daviu, 2017) detect changes in machine conditions in
temperature by monitoring essential machine components. RTDs
(Resistive Temperature Detectors) and thermocouples are utilized
in direct measurement applications. Non-contact infrared sensors
are utilized for indirect measuring applications.

• Oil and Lubricant Sensor: Particle pollution in lubrication sys-
tems is monitored using oil particle sensors (Safizadeh and Latifi,
2014). A rise in particle count may indicate that bearings, gear-
boxes are wearing out. The key benefits of using these sensors
are the ability to access lubrication conditions in harsh condi-
tions and on machinery that is not easily accessible. Another
advantage is establishing a better predictive and proactive main-
tenance program to detect the beginning stages of lubricating oil
deterioration.

• Current Sensor: The current draw of machine components is
monitored using current sensors (Guesmi et al., 2015). Monitoring
the current draw of a motor is an example of a typical application.
The high current drawn over time may indicate motor damage or
any other problems arising in other parts of the machine. These
sensors are clamped around the motor’s electrical wire.

• Acoustic Emission Sensor: Acoustic emission sensor
(Ferrando Chacon et al., 2015; Islam et al., 2019) is a device
that transforms a local dynamic material displacement produced
by a stress wave to an electrical signal. AE sensors are generally
piezoelectric sensors with specific ceramic components such as
lead zirconate titanate (PZT) as the main component. They are
widely used to detect bearing faults.

Several static, dynamic, and other aspects must be considered when
hoosing a sensor to measure a physical parameter. Sensor selection
hanges based on the application area. Let us understand some key
oints to remember before buying a sensor concerning the multi-fault
iagnosis of rotating machines.

First, it is crucial to consider the frequency response of the sen-
ors chosen, especially concerning the accelerometer (Nishat Toma
t al., 2021; Zhao et al., 2020b). It is perceived in terms of Hz in

vibration sensor. For example, if a sensor can detect vibrations
etween 1 and 10 Hz, it is difficult to identify the possible failure at
00 Hz. Table 6 (Tandon and Parey, 2006; Berry, 2000) summarizes
he various vibration fault frequencies associated with some common
otating machinery faults. Before buying the sensor, one must check
hether their fault frequencies lie in the sensor’s frequency range. Next

s the Accuracy of the sensor. The greatest difference between the real
alue and the measured value at the sensor’s output is the accuracy of
he sensor. Both an absolute value and a percentage of the whole scale
an be used to represent accuracy.

Next is the sensitivity of the sensor. Industrial accelerometers gener-

lly have a sensitivity of 10 to 100 mV/g (Islam et al., 2019), although

15
greater and lower sensitivity options exist (Khadersab and Shivakumar,
2018; Nishat Toma et al., 2021). A low sensitivity (10 mV/g) sensor
is preferred if the machine produces significant amplitude vibrations
(more than 10 g RMS) at the measuring location. For, e.g., a 100 mV/g
sensor should be utilized if the vibration is less than 10 g RMS. The
highest g level should never surpass the sensor’s acceleration range.
One should also note the temperature range of the sensor. Sensors
must be able to withstand the application’s temperature extremes.
While deciding about the sensor, it is also essential to study the type
of data acquisition (DAQ) hardware needed, ignorance of which can
be a very costly affair. The sensor interface is crucial because it is
the medium to connect to the DAQ. One should also choose between
wired and wireless sensors. Wired sensors are always preferred because
the data is reliable. Mounting of the wired and wireless sensors (Gao
et al., 2006) is also to be checked. There are four types of mounting,
with threaded studs being the best, followed by adhesives, magnets,
and probe tips. One more critical factor is the computing technique.
Whether edge computing will be implemented or cloud computing
will be preferred. Nowadays, the processing is done at the network’s
edge (Qian et al., 2019) rather than on cloud servers, which reduces
system response time, transmission bandwidth use, cloud storage, and
computation resources. This is also an essential factor as a slight error
in any decision can lead to monetary losses. Table 7 (Murphy, 2020)
summarizes sensor characteristics and some of the problems they can
detect. The table also includes an overview of the most common faults
associated with rotating machines and corresponding sensor require-
ments. Table 8 gives an analysis of multiple sensors used by researchers
in their experimental setup.

3.2.4. Challenges concerning smart sensors in Industry 4.0:
• The first challenge is related to sensor fusion. Sensor fusion is a

technology that combines data from multiple sensors to create
a single data point. A sensor fusion algorithm integrates sensor
outputs with the highest accuracy and efficiency while consuming
the least power and reduced noise. Furthermore, these sensors
communicate with an application processor via a sensor hub, and
selecting appropriate peripherals for each sensor is critical to the
success of sensor-fusion systems.

• The next is the challenge related to security and privacy. Several
solutions, both hardware, and software are aimed at resolving
privacy and security concerns. The industries would never want
their data going out of the organization, especially in cloud
computing.

• In a given industry, more than one sensor might be sending data
over the same network. As a result, the network traffic increases,
resulting in data loss.

• Finally, it is also vital to have an energy-efficient sensor network.

3.3. RQ3. What are the different data acquisition methods? What are the
data validation techniques?

Data acquisition is a critical step in condition monitoring (CM) of
rotating machinery (Soto-Ocampo et al., 2020). The Data Acquisition
System (DAQ) characteristics and the price they represent are signif-
icant challenges in their implementation (Kumar et al., 2022b). The
analog signal from an accelerometer must be converted to a digital
signal and recorded once it has been appropriately conditioned. The
data acquisition stage involves gathering measurement data from the
sensors and processing the raw signal to extract relevant features
that may be used to determine the system’s health. In data science,
this latter process is referred to as feature engineering discussed in

upcoming sections.
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Table 6
Fault frequency and phase corresponding to different faults in rotating machines.

Fault Fault frequency (fr = RPM/60) of
driver or driven rotating machine

Phase High vibration axis

Force unbalance fr 900 (between horizontal and vertical) Radial (horizontal)

Couple unbalance fr 1800 out of phase (across the bearings) Radial

Static unbalance 00 out of phase (across the bearings)

Dynamic unbalance fr In between 00 to 1800 (across the
bearings)

Radial

Overhung rotor
unbalance

fr 900 (between horizontal and vertical)
1800 axial phase diff.

Radial and Axial

Angular
misalignment

fr, 2fr, 3fr 1800 out of phase across the coupling Axial

Parallel
misalignment

fr, 2fr, 3fr 1800 out of phase across the coupling Radial

Misaligned bearing
cocked on the shaft

fr, 2fr, 3fr 1800 out of phase on bearing housing Axial

Rolling element
bearing

Rolling element fault frequency is given by: – Axial

Outer race defect = 𝑁
2

𝑓𝑟{1 − 𝑅𝑑
𝑃𝑑

𝑐𝑜𝑠 𝛼}
Inner race defect = 𝑁

2
𝑓𝑟{1 + 𝑅𝑑

𝑃𝑑
𝑐𝑜𝑠 𝛼}

Rolling Element defect = 𝑃𝑑
𝑅𝑑

𝑓𝑟 {1 − ( 𝑃𝑑
𝑅𝑑

𝑐𝑜𝑠 𝛼)
2
}

Cage Defect Frequency = 𝑓𝑟
2
{1 ± 𝑅𝑑

𝑃𝑑
𝑐𝑜𝑠 𝛼}

(+ sign if the outer race is rotating, - sign if the
inner race is rotating
N = No. of rolling elements, Fr = shaft rotational
speed, Hz, Rd = Rolling
element diameter, Pd = Pitch circle diameter, α =
Contact angle

Eccentric rotor fr (of motor and driven machine, e.g.,
Fan)

Either 00 or 1800

(between horizontal
and vertical)

Radial

Bent shaft fr (if bent near shaft) 1800 axial phase Axial
2fr (if bent near coupling) difference

Mechanical
looseness

fr (structural looseness at machine feet) 900 or 1800

(between horizontal and vertical)
Radial
(Vertical)

0.5fr, fr, 2fr, 3fr (pillow block bolt
looseness)

– Radial

0.5fr, fr, 1.5fr, 2fr, 2.5fr,. . . etc.
(improper fit between components)

– Radial

Resonance When fr = natural frequency of
components

Before and after resonance, a shift in
phase difference is 1800

Radial

Soft foot fr (also can be at 2fr, 3fr, 2 times line
frequency..)

– Radial (vertical)

Gear faults Tooth meshing frequency = Nfr And
sidebands at Nfr ± kfr, N: Number of
gear teeth, 𝐾 = 1, 2, 3..

– Radial
3.3.1. DAQ setup specifications
Following criteria are very important when researching data acqui-

sition hardware for a given application (Hanly, 0000).

Sensor compatibility: The type of appropriate data acquisition system
s typically determined based on the sensor’s output. Some questions
elated to sensor compatibility that generally arise are whether the
ensor output is analog or digital, the output range, etc. In addition,
he sensor must be compatible with the data acquisition system.

ampling Frequency: According to the Nyquist theorem, the sampling
requency (inverse of the sampling rate) should be at least 2.56 times
he maximum frequency present in the signal to catch the vibration
ignal’s profile (Hanly, 0000) accurately. Picking a system that can
ample at least ten times faster than the fastest signal that needs to
e recorded is a valuable piece of advice (Islam et al., 2019).

easurement Resolution: The resolution is usually provided in bits,
converted to acceleration units to compute the resolution. Consider
an accelerometer system with a 24-bit resolution, which means it
can measure 24 (Tandon and Parey, 2006; Kumar and Tiwari, 2021;
Khalastchi and Kalech, 2018) acceleration levels. DAQ systems usually
16
have a resolution of 16 or 24 bits. Higher the resolution better the
data visualization. One must note the difference between resolution
of DAQ system and the resolution of the sensor used. Both may vary.
Sometimes the sensor may have a very high resolution however the
DAQ system might have comparatively lower resolution. In this case,
the data acquired may be of the lower resolution as compared to the
resolution of the sensor.

Filtering capabilities: Filtering is an essential function of DAQ used
to filter unwanted frequency components or noise. Type of filter used
changes from one application to other.

Dynamic Range of DAQ System: The variation between the smallest
and biggest visible parts of a signal is known as a dynamic range.
Systems with greater dynamic ranges improve vertical axis resolu-
tion. Most applications can be handled by having a dynamic range
higher than 100 dB and a sampling rate of at least 200 kS/s.

Standalone or PC connection: PC-connected DAQ systems have the
advantage of being smaller as there is no need for separate displays,
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Table 7
Overview of sensors used in predictive maintenance.
Table 8
Analysis of multiple sensors used by researchers in the experimental setup.
etc. For the same reason, they are generally less expensive. However,
for better data security, a standalone system is preferable.

Data analysis: Most DAQ systems integrate built-in data analysis that
may be used after collecting the data. If the data is to be analyzed
outside the DAQ system, it should be exported in standard formats.
The most common analysis platforms are Excel for restricted datasets
and Matlab for almost infinite datasets with a large range of built-in
analytical capabilities (Soto-Ocampo et al., 2020).

3.3.2. Components of DAQ system
A data acquisition system (DAQ) (Soto-Ocampo et al., 2020) typ-

ically consist of sensors for measuring electrical signals, signal con-
ditioning logic, and other hardware like Analog to digital converter
(ADC), multiplexer, ADC, DAC, TTL-IO, high-speed timers, RAM, etc.
for receiving analog signals and providing them to a processing system,
17
such as a personal computer. Let us understand the critical components
of the DAQ system. After selecting an appropriate sensor, it is essential
to implement signal conditioning (Hanly, 0000). Vibration measure-
ment inaccuracy can be caused by insufficient signal conditioning.
Signal conditioning is the process of preparing an analog signal pro-
duced from a sensor so that it may be measured efficiently and correctly
by the data Acquisition system’s (DAQ) digitizer. In reality, signal
conditioning is one of the essential components of a data collection
system since the accuracy of the measurement would be unclear until
real-world signals are tailored for the digitizer used by DAQ (Nath
et al., 2021). Signal conditioning may include filtering, Amplification,
isolation, excitation, linearization, etc. An Analog to Digital Converter
(ADC) is at the heart of any data acquisition system. This chip receives
data from the sensors and transforms it to discrete levels processed by
a processor (Zhao et al., 2020b).
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There are different data acquisition options, including Data log-
ers, Data Acquisition devices, and Data Acquisition systems. A Data
ogger is a self-contained data collection system with an integrated
PU and pre-programmed software. Data loggers are popular because
hey are portable and easy to use for specialized purposes and may
unction as stand-alone devices. A data acquisition device (Khadersab
nd Shivakumar, 2018) (USB, Ethernet, PCI, etc.) has signal condi-
ioning and an ADC, but it cannot operate without being linked to a
omputer (Soto-Ocampo et al., 2020). Plug-in device users can use ei-
her preconfigured data acquisition software (Zhao et al., 2020b), such
s DAQamiTM, or a programming environment, such as PythonTM,
++, DASYLab, MATLAB, and LabVIEW TM. Data collection devices
rovide a configurable solution for a specific application, with various
US choices (Soto-Ocampo et al., 2020) and the ability to utilize your
avorite software. Modular data acquisition systems are developed for
omplicated systems that require several sensor types to be integrated
nd synchronized. These systems are more challenging to set up and
perate, but they are very adaptable. Although modular data acquisi-
ion systems are the most expensive choice, many applications require
he functionality that only a data acquisition system can provide.
he DAQ’s last component is a computer that collects all of the data
ollected by the DAQ hardware for further processing. To make sense
f the data, DAQ software is also essential to generate legible and
elevant results. To put it another way, the DAQ software serves as
bridge between the user and the DAQ hardware.

.3.3. Types of DAQ systems
There are different types of DAQ Systems. Wireless DAQ Sys-

ems (Kurnyta-Mazurek et al., 2020), Serial communication DAQ Sys-
ems, USB DAQ Systems, and DAQ Plugin boards (Omega Engineering
nc, 0000). Wireless systems consist of wireless transmitters sending
ata back to a wireless receiver connected to a remote computer. When
he measurement needs to be conducted at a distance from the com-
uter, serial communication data acquisition systems are an excellent
lternative. There are numerous communication protocols (Luo et al.,
019), the most popular being RS232, which allows for up to 50 ft of
ransmission lengths. RS485 outperforms RS232 and allows for trans-
ission lengths of up to 5000 ft. USB is a new protocol for connecting
Cs to data acquisition devices. Because USB interfaces provide power,
he data acquisition system only requires one cable to connect to the
C. Data acquisition boards for computers are directly connected to
he computer bus. The advantages of utilizing boards include speed
because they are simply linked to the bus) and cost (because the
omputer provides the cost of packaging and power).

.3.4. Data validation
Data validation is a critical process that ensures the quality of input

ata before it is utilized to build models and insights (Polyzotis et al.,
019). Whether collecting data in the field, analyzing data, or preparing
o deliver data to stakeholders, data validation is crucial for every data
andling activity. If the data is not accurate from the start, findings will
ost likely be inaccurate as well. As a result, data must be verified and

alidated before being used. The data validation procedure includes
everal steps:

• Ensure that the data is of the correct type: integer, data, text,
Boolean, and so on.

• Checking the value range: minimum and maximum values, as well
as correct format (voltage, acceleration, etc.)

• Validating data by applying application-specific requirements
such as correct temperature, etc.

• Checking for consistency: It is important to check the consistency
of the data. For eg. In case of Unbalance fault in the machinery,
vibration amplitude for horizontal measurement is always higher
than axial and vertical, and so on.
18
Writing a script for data validation may be an option depending
on coding language proficiency. Another option is to use software pro-
grams designed for data validation. Because AI and machine learning
models can only generate legitimate results if constructed with valid
data, it is essential to follow all of the procedures outlined above during
the data acquisition phase to guarantee that models work with clean
data.

3.4. RQ4. What are the different signal processing techniques?

Vibration signals recorded using vibration sensors from a rotating
machine are frequently in the time domain. Depending on the type of
sensor used to acquire the data, they are a collection of time-indexed
data points gathered across historical time, signifying acceleration,
velocity, or proximity (Time Domain Analysis, 2019). This data is so
extensive and from multiple sources in multiple conditions that it is
challenging to inspect and conclude the type of fault visually. As a
result, Signal processing is frequently required to clean data and put it
into a format from which condition indicators may be extracted, called
features. Feature extraction is a part of signal processing that gives
the essence of the data. These features are used to distinguish between
two different vibration signals. Feature extraction is a dimensionality
reduction method that reduces a large collection of raw data into
smaller groupings for processing (Huang and Liu, 2020). Feature extrac-
tion refers to strategies for selecting and/or combining variables into
features to reduce the quantity of data that must be processed while still
thoroughly and adequately characterizing the original data set (Kumar
and Kumar, 2019). The speed of learning and generalization phases in
the machine learning process is aided by reducing data and the com-
puter’s efforts in creating variable combinations (features). The feature
extraction is classified under three categories: time-domain features,
frequency domain features, and time–frequency domain features (Li,
2006; Huang and Liu, 2020; Li et al., 2016). Let us understand the
different features in detail.

3.4.1. Time-domain features
A time-domain graph shows how a signal changes over time. Let

us look at statistical functions and other sophisticated approaches
that may be used to extract features from time-indexed raw vibration
datasets. It will adequately reflect machine health to better comprehend
vibration signal processing in the time domain. Different statistical
functions are used to extract features from time-domain signals based
on the amplitude (Time Domain Analysis, 2019). Statistical Time do-
main features (Islam et al., 2019) are Peak Amplitude, Mean Ampli-
tude, Root Mean Square (RMS) Amplitude, Peak to Peak Amplitude,
Crest Factor (CF), Variance and Standard Deviation, Standard Error,
Zero Crossing, Wavelength, Wilson Amplitude, Slope sign change, Im-
pulse factor, Margin factor, Shape factor, Clearance factor, Skewness,
Kurtosis, Higher-Order Cumulants, Histogram, Entropy (Wei et al.,
2019; Biggio and Kastanis, 2020). Time Synchronous averaging fea-
tures include TSA signal, Residual Signal (RES), and Difference Signal
(DIFS). Time series regressive models include Auto-Regressive Model
(AR Model), MA Model, ARMA Model, ARIMA Model. Filter-based
methods include demodulation, the Prony model, and adaptive noise
cancellation (ANC). ?Stochastic parameters such as chaos, correlation
dimensions, and thresholding methods, i.e., soft and hard threshold,
are considered effective techniques for analyzing time-series vibration
signals. Furthermore, the ?Blind source separation (BSS) is a signal-
processing method that recovers the unobserved signals from a set of
observations of numerous signal combinations. All these methods and
are shown in Fig. 12 (Nandi and Ahmed, 2019). Detailed analyses of
some of these time-domain features, along with their definition and
formula, are given in Table 9 (Huang and Liu, 2020; Nandi and Ahmed,
2019).
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Fig. 12. Overview of time domain feature extraction methods.
3.4.2. Frequency domain features
One of the most often used vibration analysis techniques for mon-

itoring equipment is frequency analysis, also known as spectrum anal-
ysis. ?In the frequency domain, each sine wave will be represented as
a Spectral component. Frequency domain analysis methods, in reality,
can reveal information based on frequency features that are difficult
to detect in the time domain (Nandi and Ahmed, 2019). As discussed
earlier, vibration signals in the time domain are generated by rotating
machines. To convert them into the frequency domain, we use Fourier
analysis. There are different types of Fourier analysis like Discrete
Fourier Transform (DFT), Fast Fourier Transform (FFT), Inverse FFT
and DFT, etc. (Sohaib et al., 2017), which are used to transform the
time-domain signal to the frequency domain. Apart from this, several
other approaches for extracting various frequency spectrum features
19
may be utilized to depict a machine’s health effectively. The other
approaches include Envelope spectrum analysis, power spectrum analy-
sis, spectral kurtosis (Touzout et al., 2020), spectral skewness, Spectral
Entropy, Shannon Entropy (Chhetri and Faruque, 2020), and some
Higher-order spectrum analysis. There are also statistical functions
like Arithmetic mean, Geometric mean, Frequency Centre (FC), RMS
Frequency (RMSF) (Islam et al., 2019), Root variance frequency (RVF),
median frequency, etc. When a failure occurs, the frequency element
changes, and so do the FC, RMSF, and RVF values. The FC and RMSF
represent the main frequency position changes, whereas the RVF de-
picts power spectrum convergence. All these methods and are shown
in Fig. 13 (Huang and Liu, 2020; Kumar and Kumar, 2019; Nandi and
Ahmed, 2019; Caesarendra and Tjahjowidodo, 2017). Detailed analyses
of some of these frequency domain features, along with their definition
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Table 9
Time domain features along with their definition and formula.

Feature Definition Formula Significance/Note

Peak
amplitude

Largest positive amplitude of the
vibration signal. Indicator of occurrence
of impacts.

𝑥𝑝 =
1
2
[𝑥𝑚𝑎𝑥(𝑡) − 𝑥𝑚𝑖𝑛(𝑡)] 𝑥 = amplitude 𝑥(𝑡) = vibration signal.

Peak amplitude is valuable for shock
events, but it does not consider the time
duration or energy in the event.

Mean amplitude Average of the vibration signal
throughout a measured interval.

𝑥 = 1
𝑇
∫ 𝑥(𝑡)𝑑𝑡 𝑇 = sampled signal duration.

Root Mean Square (RMS) amplitude Variance of the vibration signal
magnitude. It is the measure of power
contained in the vibration signal.

𝑥𝑅𝑀𝑆 =
√

1
𝑇
∫ |𝑥(𝑡)|2𝑑𝑡 It increases as fault develops.

Peak-to-peak amplitude Difference between the highest positive
peak amplitude and the highest negative
peak amplitude.

𝑥𝑝−𝑝 = 𝑥𝑚𝑎𝑥(𝑡) − 𝑥𝑚𝑖𝑛(𝑡) Provides max. excursion of the wave,
beneficial wrt. Displacement, specifically
clearances.

Crest factor Ratio of the vibration signal’s peak
amplitude to its RMS amplitude. Faults
often first manifest themselves in
changes in the peakiness of signal before
they manifest in energy represented by
RMS.

𝑥𝐶𝐹 = 𝑥𝑝
𝑥𝑅𝑀𝑆

Healthy bearing = more CF. Calculates
how much impact occurs during the
rolling element and raceway contact. CF
can provide early warning for faults
when they first develop.

Variance and standard deviation Variance is the deviation of the
vibration signal energy from the mean
value. The square root of the variance is
the standard deviation.

(𝑉 ) 𝜎2
𝑋 =

∑

(𝑥𝑖−𝑥)
2

𝑁−1
𝑁 = no. of sampled points 𝑥𝑖 = element
of 𝑥.

(𝑆𝐷) 𝜎𝑋 =
√

∑

(𝑥𝑖−𝑥)
2

𝑁−1

Impulse factor The ratio of the peak value to the
average of the absolute value of the
vibration signal.

𝑥𝐼𝐹 = 𝑥𝑝𝑒𝑎𝑘
1
𝑁

∑𝑁
𝑖=1 |𝑥𝑖 |

Compare the height of a peak to the
mean level of the signal.

Clearance factor Ratio of the maximum value of the
input vibration signal to the mean
square root of the absolute value of the
input vibration signal.

𝑥𝐶𝐿𝐹 = 𝑥𝑚𝑎𝑥
( 1
𝑁

∑𝑁
𝑖=1

√

|𝑥𝑖 | )
2 This feature is max. for healthy bearings

and decreases for the defective ball,
outer race, and inner race, respectively.
CF has the highest separation ability for
defective inner race faults.

Skewness The measure of asymmetrical behavior
of vibration signal through its
probability density function (PDF), i.e.,
it measures whether vibration signal is
skewed to left or right side of
distribution of normal state of the
vibration signal.

𝑥𝑆𝐾 =
∑𝑁

𝑖=1 (𝑥𝑖−𝑥)
3

𝑁𝜎3
𝑥

𝑥𝑆𝐾 For normal condition is zero. Faults
can impact distribution symmetry and
therefore increase the level of skewness.

Kurtosis The measure of the peak value of the
input vibration signal through its PDF.

𝑥𝐾𝑈𝑅𝑇 =
∑𝑁

𝑖=1 (𝑥𝑖−𝑥)
4

𝑁 𝜎4
𝑥

Good bearing: Kurtosis value < = 3.
defective bearing: Kurtosis value > 3.

Histogram Discrete PDF of the vibration signal. 𝐿𝐵 = 𝑥𝑚𝑖𝑛 − 0.5( 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
𝑁−1

) The lower bound (LB) and upper bound
(UB) are two characteristics derived
from the histogram.

𝑈𝐵 = 𝑥𝑚𝑎𝑥 − 0.5( 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
𝑁−1

)

Entropy Measure of the uncertainty of probability
distribution of the vibration signal.

𝑥𝐸𝑁𝑇 =
∑𝑁

𝑖=1 𝑝𝑥𝑖 𝑙𝑜𝑔 𝑝𝑥𝑖 𝑝𝑥𝑖 = probabilities computed from the
distribution of 𝑥.

AR model Linear regression analysis of the current
signal values, i.e., the estimated signal
values, of the vibration time series
against previous values of the time
series.

𝑥𝑡 = 𝑎1𝑥𝑡−1 + 𝑎2𝑥𝑡−2 +… . + 𝑎𝑝𝑥𝑡−𝑝 +
𝜇𝑡 = 𝜇𝑡 +

∑𝑝
𝑖=1 𝑎𝑖𝑥𝑡−𝑖

𝑥𝑡 = stationary signal, 𝑎1 − 𝑎𝑝 are model
parameters, 𝜇𝑡 = white noise p = model
order.
and formula, are given in Table 10 (Huang and Liu, 2020; Kumar and
Kumar, 2019; Nandi and Ahmed, 2019; Caesarendra and Tjahjowidodo,
2017).

3.4.3. time–frequency domain features
Rotating machines, in general, generate stationary vibration signals.

However, some rotating machine analysis is focused on analyzing
vibrations during a speed change. As a result, nonstationary signals
with changing frequency content are common. When we convert a
signal to its frequency domain, we assume that its frequency com-
ponents do not vary over time, i.e., the signal is stationary. As a
result, the Fourier transform in the frequency domain cannot offer
information on the time distribution of spectral components. Therefore
time–frequency domain needs to be used for nonstationary waveform
20
signals, which are very common when there is machinery failure (Nandi
and Ahmed, 2019). Standard time–frequency domain analysis tech-
niques include Short-time Fourier transform, Wavelet analysis, Empiri-
cal mode decomposition (Wang et al., 2017), Hilbert–Huang Transform,
Wigner–Ville distribution, Local Mean Decomposition, Kurtosis, and
Kurtogram (Tang et al., 2020; Gangsar and Tiwari, 2018), etc. These
techniques convert one-dimensional time-domain signals into a two-
dimensional time–frequency function (Feng et al., 2013). All these
methods and are shown in Fig. 14 (Huang and Liu, 2020; Nandi and
Ahmed, 2019). Detailed analyses of some of these frequency domain
features, along with their definition and formula, are given in Ta-
ble 11 (Huang and Liu, 2020; Nandi and Ahmed, 2019; Feng et al.,
2013). Also, the literature analysis of some of the articles related to
feature evaluation is shown in Table 12.
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Fig. 13. Overview of frequency domain feature extraction methods.
Table 10
Frequency domain features along with their definition and formula.

Feature Property Formula Note/Significance

Discrete
Fourier
Transform

Used to convert time domain signal to
the frequency domain

𝑥(𝑤) = ∫ ∞
−∞ 𝑥(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡 𝑤 = 2π∕𝑇

It can be used to find the root of the
fault.

Frequency
Center

Indicate the position changes of main
frequencies

𝐹𝐶 =
∑𝑁

𝑖=2 𝑥
′
𝑖𝑥𝑖

2π
∑𝑁

𝑖=1 𝑥
2
𝑖

–

RMS
Frequency

Indicate the position changes of main
frequencies

RMSF=
√

𝑀𝑆𝐹 𝑀𝑆𝐹 =
∑𝑁

𝑖=2 (𝑥
′
𝑖 )
2

4π2
∑𝑁

𝑖=1 𝑥
2
𝑖

Represents overall level
of energy across freq. range

Root
Variance
Frequency

Shows the convergence of the power
spectrum

RVF=
√

𝑀𝑆𝐹 − 𝐹𝐶2 –

Spectral
Skewness

SS measures the symmetry of the
distribution of spectral magnitude values
around its mean.

SS(n)= 2
∑

𝐵𝐿
2−1
𝑘=0 (|𝑋(𝑘,𝑛)|−𝜇|𝑋|)3

𝐵𝐿 .𝜎3
|𝑋|

–

Spectral
Kurtosis

Measures the distribution of the spectral
magnitude values and compares them to
a Gaussian distribution

SK(n)= 2
∑

𝐵𝐿
2−1
𝑘=0 (|𝑋(𝑘,𝑛)|−𝜇|𝑋|)4

𝐵𝐿 .𝜎4
|𝑋|

− 3 –
3.5. RQ.5. What are the approaches to achieve information fusion or
multi-sensor data fusion?

Predictive maintenance has currently been the trend of Industry 4.0,
where the machine is monitored for early detection of the fault and
avoid failure before it occurs. A single sensor focuses on one parameter
avoiding the broader aspects of data, thereby degrading the data quality
and likely to induce error in monitoring complex equipment. Hence,
multiple sensor configuration technology is introduced to collect ex-
tensive information of a machine to enhance monitoring capabilities in
terms of measurement accuracy and data richness to improve precision,
21
resolution, efficiency, robustness, and reliability of the entire system.
However, complex data collected by multiple sensors create a challenge
for data integration and analysis. Therefore, Multisensor data fusion
techniques are in great demand for future applications (Yi et al., 2018).
The advantage of multi-sensor data fusion is that sensor data collected
from several locations span a broader display range of the actual situa-
tion at the machinery. Also, the complete examination of each sensor’s
data complements the information while reducing discrepancies. It also
increases the data credibility (Tang et al., 2020). Information fusion
technology can be divided into three fusion methods: data-level fusion,
feature-level fusion, and decision-level fusion. Each fusion method
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Fig. 14. Overview of time–frequency domain feature extraction methods.
Table 11
Time–frequency domain features along with their definition and formula.

Feature Property Formula Note

Short-Time
Fourier
Transform
(STFT)

Instead of computing the DFT of the
whole signal, we decompose a signal
into shorter segments of equal length

𝑆𝑇𝐹𝑇 𝑥(𝑡)(𝑡, 𝑤) = ∫ ∞
−∞ 𝑥(𝑡)𝑤(𝑡 − τ)𝑒𝑥𝑝(−𝑗𝑤𝑡)𝑑τ 𝜏 = 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑤(τ) = 𝑤𝑖𝑛𝑑𝑜𝑤 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Continuous
Wavelet
Transform

Extension of the Fourier transform maps
the original signal from the time domain
to the time–frequency domain.

𝑊𝑥(𝑡)(𝑠, 𝜏) =
1
√

𝑠
∫ 𝑥(𝑡)𝜑∗( 𝑡−𝜏

𝑠
)𝑑𝑡 𝜑∗ is the complex conjugate of 𝜑(𝑡)

Discrete
Wavelet
Transform

Used for the computerized
implementation and analysis process of
wavelet transforms.

𝑊𝑥(𝑡)(𝑠, 𝜏) =
1

√

2𝑗
∫ 𝑥(𝑡)𝜑∗( 𝑡−𝑘2

𝑗

2𝑗
)𝑑𝑡 𝐽 and 𝑘 are integers

Wavelet
Packet
Transform

DWT is further decomposed into an
approximation signal and a detail signal

𝑑𝑗+1,2𝑛 =
∑

𝑚 ℎ(𝑚 − 2𝑘)𝑑𝑗,𝑛 𝑚 is no. of coefficients and
𝑑𝑗,𝑛 , 𝑑𝑗+1,2𝑛𝑎𝑛𝑑 𝑑𝑗+1,2𝑛+1 are wavelet
coefficients at sub-bands 𝑛, 2𝑛, 2𝑛+1 resp.

Empirical
Mode Decom-
position

Nonlinear and adaptive data analysis
technique that decomposes the time
domain signal 𝑥(𝑡) into different scales
or Intrinsic mode functions (IMF)

𝑥(𝑡) =
∑𝑛

𝑗=1 𝑐𝑗 + 𝑟𝑛 𝑐𝑗 is 𝑗th IMF and 𝑟𝑛 Is residual of data
𝑥(𝑡) after extraction of n IMFs.

Local Mean
Decomposi-
tion

Decomposes a complicated signal into a
set of product functions (PFs), each of
which is the product of an envelope
signal and a purely frequency modulated
signal.

𝑥(𝑡) =
∑𝑚

𝑖=1 𝑃𝐹 𝑖(𝑡) + 𝑢𝑚(𝑡) 𝑚 is the number of PFs.

Frequency
Domain
Kurtosis

The ratio of the expected value of the
fourth-order central moment of STFT to
the expected value of the square of the
second-order central moment of STFT

𝒙𝑭𝑫𝑲 (𝒇 ) = 𝑬{[𝒙(𝒒,𝒇𝒑 ]𝟒}

𝑬{[(𝒙(𝒒,𝒇 ))𝟐 ]𝟐}
𝒙(𝒒,𝒇 ) =

√

𝒉
𝒎
∑𝒎−𝟏

𝒊=𝟎 𝒘𝒊𝒙(𝒊, 𝒒)𝒆𝒙𝒑(−𝒋𝒇 𝒑𝒊)
where ℎ = interval between successive
observations of the process; 𝑤𝑖 = 1;
𝑓 = 2𝜋∕𝑚; 𝑞 = 1, 2,…𝑛; 𝑝 = 0, 1, 2,…𝑚;
𝑗 =

√

−1; 𝑥(𝑖, 𝑞) is 𝑖∕𝑝 signal
has its advantage and disadvantage. The choice of fusion method is
determined by the application of the user and types of sensors. In the
data-level fusion approach, data from commensurate sensors are fused
directly. The fused data is then subjected to feature extraction, followed
by a pattern recognition method for classification. The models for
data fusion include a weighted average method, Kalman filter method,
mathematical statistics method, etc. At this level, fused data is more
accurate and trustworthy than data obtained from a single sensor.
The sensors employed at this level, however, must be comparable.
That is, the measurement must be the same or have physical qualities
or occurrences that are identical. The weighted value of multi-sensor
signals is difficult to establish when using the most prevalent data-
level fusion approach, such as weighted fusion. As a result, data-level
22
applications are constrained in the real world. Data-level information
fusion is as shown in Fig. 15 (Jing et al., 2017; Tong et al., 2020a).

In the feature-level fusion, each sensor is used to collect a kind
of signal. Feature extraction is subsequently applied to obtain a fea-
ture vector. All features are combined to identify the best subset of
features, then input into a classifier or decision-level fusion. All non-
commensurate sensor features are merged to form a larger single
feature set, subsequently employed in a specific classification model.
Here, heterogeneous sensors are allowed, and information compression
is still superior. As a result, feature-level applications are versatile
and widely used. The integration of feature-level algorithms mainly
includes the Kalman filter method, fuzzy inference method, neural
network method, etc. Decision-level fusion is a type of high-level fusion
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Table 12
Literature analysis related to features studied.
Fig. 15. Data-level Information fusion.
hat includes combining the results of several sensors. It stresses the ne-
essity of combining classifiers for a better outcome. The decision level
usion helps minimize the misdiagnosis rates in both false positives and
alse negatives (Safizadeh and Latifi, 2014). At decision-level fusion,
eatures calculation and pattern recognition processes are applied in
equence for single-source data obtained from each sensor. Decision-
evel fusion methods are then utilized to fuse the decision vectors. The
ntegration of the decision layer mainly includes Bayesian reasoning, D-
Reasoning, etc. A brief overview of feature fusion and decision level

usion is shown in Fig. 16 (Huang and Liu, 2020; Nacchia et al., 2021).
Based on the type of sensors used, multi-sensor fusion is of three

ypes (Gruyer et al., 2017). Global multi-sensor fusion where homoge-
eous processing data given by many sensors but represented in a single
eference frame is required. The available data is then analyzed as if it
23
were a single source of information. Second is local/global multi-sensor
fusion, where data acquired from different heterogeneous sources is
processed. Each sensor’s data will be handled individually in this sce-
nario, and the resulting output information will be homogeneous. This
information homogeneity may then be used to execute a global fusion
step. Last is the hybrid multi-sensor fusion, which compromises both
global multi-sensor fusion and global–local multi-sensor fusion. This
design prioritizes highly reliable sensors by providing a local treatment
to their data to reduce the impact of less capable sensors. In addition,
this design allows for the collection of all homogeneous sensor data to
improve output accuracy.

3.5.1. Challenges in multi-sensor data fusion:
There are a variety of factors that make data fusion difficult, stated

as follows:
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Fig. 16. Information fusion at feature-level and decision-level.
• The bulk of difficulties stem from the data to be merged, the
inaccuracy and diversity of sensor technology, and the application
environment (Khaleghi et al., 2013).

• The data collected by sensors is always subject to some de-
gree of imprecision and uncertainty in the readings. Data fusion
techniques should be able to convey such flaws (Khalastchi and
Kalech, 2018) adequately.

• Fusion systems should also handle homogeneous and heteroge-
neous data as the data can be from a similar type of multiple
sensors or multiple types of multiple sensors (Montero Jimenez
et al., 2020).

• Measurements acquired throughout the monitoring process in
multi-sensor fall detection are generally unrelated and come from
diverse sources. Not only should this data be combined in the
most efficient way possible, but they should also be examined for
common patterns and commonalities (Koshmak et al., 2016).

• Various data sections may travel different paths before reaching
the fusion center in distributed fusion setups, resulting in data
arriving out of order. To minimize performance deterioration,
this issue must be managed appropriately, especially in real-time
applications.

• Multi-sensor fusion, as previously said, aids in fault diagnostic
reliability. Simultaneously, more sensor devices might consider-
ably raise the monitoring framework’s final cost. One should also
consider the data acquisition system, which may be costly due to
multiple sensors.

• Finally, it is also essential to decide the way of analysis: edge
computing or cloud computing. Cloud computing is again very
complex due to large data over the cloud (Jagatheesaperumal
et al., 2021).

.6. RQ6. How to implement AI models for multi-fault detection?

Artificial Intelligence (AI) has become a widely used technique for
ata-driven fault diagnosis (Ding et al., 2020). The three primary duties
f fault diagnosis are determining if the equipment is normal or not,
ocating the incipient failure and its cause, and forecasting the fault
evelopment trend. Artificial intelligence (AI) has garnered much inter-
st from researchers to accomplish these three objectives, and it shows
romise in rotating machinery defect identification applications (Liu
t al., 2018). Because of their resilience and adaptability, AI algorithms
or fault diagnostics in rotating machinery have grown widespread.

AI-based methods are classified into two categories, considering
he profundity of model structures, i.e., Machine learning (ML) and
eep learning (DL). Machine learning is a technique for process-

ng data, learning from it, and making decisions based on what has
24
been learned (Nguyen et al., 2019). Deep learning creates an ‘‘artificial
neural network’’ that can learn and make smart decisions by stacking
algorithms. In other words, Deep learning can be called a subset of
machine learning. Next, based on supervision, Machine learning is
classified as supervised and unsupervised learning. Algorithms like K-
Means (Diez-Olivan et al., 2017; Kamat et al., 2021), Neural network
(NN), etc., are examples of unsupervised ML. Supervised machine
learning (Çinar et al., 2020) is of two types based on the tasks to
be accomplished. They are classification and Regression. Classification
algorithms are used to classify multiple faults in machinery. Regres-
sion algorithms assist us in predicting the upcoming faults based on
experience or, in other words, the Remaining Useful Life (RUL) (Kumar
et al., 2022a) of machinery. K-Nearest Neighbor (KNN) (Baraldi et al.,
2016), Back Propagation (BP), Support Vector Machine (SVM) (Liu
et al., 2018; Hui et al., 2017; Wang et al., 2014) are examples of
classification algorithms. Random forest (RF), Artificial Neural net-
work (ANN) (Luwei et al., 2018), Linear regression (LR), Gaussian
Process Regression (GPR), Support vector regression (SVR) are some
algorithms for regression (Akhil et al., 2020). Deep learning can be
a comprehensive and effective response to most questions related to
machine health monitoring systems (MHMS) for addressing big data
and learning multi-scale/multi-facet/stratified representation. There
are different variants of Deep learning algorithms such as Recurrent
Neural Networks (RNN) (Zhao et al., 2019), Auto-encoders (AE) (Chen
and Li, 2017), Convolutional Neural Networks (CNN) (Zhao et al.,
2019; Kumar et al., 2022b), Deep Belief Network (DBN) (Chen and Li,
2017; Wang et al., 2014), and Deep Boltzmann Machines (DBM) (Zhao
et al., 2019). In recent years, researchers have successfully imple-
mented these models in the field of Predictive maintenance. Sometimes
hybrid of these methods, that is, multiple data-driven algorithms or
a combination of data-driven and physics-based algorithms, are used,
which are more effective.

A representation of different algorithms used for fault diagnosis
and the types of faults diagnosed using both data-driven and hybrid
approaches are depicted in Tables 13 and 14. Table 13 analyses the
data-driven approaches currently employed by researchers for fault
diagnosis in industrial rotating machines, as discussed earlier. Ta-
ble 14 is the analysis of hybrid approaches using knowledge-based,
physics-based, and data-driven approaches used by the researchers. For
example, Satish and Sarma (2005) presented a hybrid knowledge-based
and data-driven approach for fault diagnosis using Fuzzy logic and a
Neural network to predict RUL. Swanson (2001) proposed a hybrid
of knowledge-based and physics-based approaches using Fuzzy logic
and Kalman filter to predict damage in aircraft actuator faults. Zhang
et al. (2002) proposed a similar hybrid of fuzzy logic and wavelet

neural networks to calculate RUL. Liu et al. (2012) proposed a hybrid,
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Table 13
Contribution of data-driven approach for fault diagnosis of rotating machine.

Algorithm Algorithm
type

Definition Diagnosis
application

Accuracy Advantages Limitations Ref.

Deep belief
network
(DBN)

Deep
Learning

The DBN is a deep architecture with
multiple hidden layers that can learn
hierarchical representations
automatically in an unsupervised
way and perform classification at the
same time.

Fault in
Induction motor,
Bearing faults,
etc.

99.9% (Tao et al.,
2016)
97.82% (Chen and Li,
2017)

Efficient usage of hidden layers
processes unlabeled data effectively, and
the problem of overfitting and
underfitting may also be avoided

Increasing run time complexity. Shao et al. (2017) Tao et al. (2016)
Chen and Li (2017)

Auto Encoder
(AE)

Deep
Learning

An AE is an unsupervised neural
network with three layers, which
could take an input vector to form a
high-level concept in the next layer
through a nonlinear mapping.

Bearing faults 100% (Shi et al., 2020)
98.3% (Mao et al.,
2021)

Can combine multi-sensor data, prior
knowledge not essential

Wide range of data needed, unable to
identify relevant information

Chen and Li (2017) Shi et al. (2020)

Deep Neural
Network
(DNN)

Deep
Learning

DNNs have deep architectures
containing multiple hidden layers,
and each hidden layer conducts a
non-linear transformation from the
previous layer to the next one.

Fault in Bearings
and gearbox

99.06% (Akhtari et al.,
2019) 100% (Sohaib
et al., 2017)

automatically deduced and optimally
tuned for the desired outcome, robust,
flexible

Needs wide range of data for training,
overfitting issue

Jia et al. (2016) Akhtari et al. (2019)
Sohaib et al. (2017)

Convolutional
Neural
Network
(CNN)

Deep
Learning

A CNN is a Deep
Learning algorithm that can take in
an input image, assign importance
(weights) to various aspects/objects
in the image and be able to
differentiate one from other

Fault in
bearings,
unbalance,
motor faults,
pump faults

93.54% (Wang et al.,
2019) 90.24% (He
et al., 2021a)

Needs less storage, is less complex
compared to ANN, better autodetection

Needs wide range of data for training,
overfitting issue, the high computational
cost

Janssens et al. (2016) Wang et al.
(2019) He et al. (2021a)

Artificial
Neural
Network
(ANN)

Deep
Learning

An ANN is based on a collection of
connected units or nodes called
artificial neurons, which loosely
model the neurons in a biological
brain.

Fault in bearing,
misalignment,
rotor bar faults

94% (Luwei et al.,
2018)
97.89% (Huang and
Liu, 2020)

Good adaptability, high tolerance for
defects, better prediction, and
classification.

Needs wide range of training data,
overfitting issue, std. network structure
not defined

Liu et al. (2018) Luwei et al. (2018)
Huang and Liu (2020)

RNN/LSTM Deep
Learning

A recurrent neural network (RNN) is
a class of ANN where connections
between nodes form a directed graph
along a temporal sequence.

Gearbox fault,
tool fault, RUL,
bearing fault

RNN: 94.6% LSTM:
99.2% (Udmale and
Singh, 2019)

RNN: easy to process for long i/p,
weight can be shared across time-steps.
LSTM: better for time-series data, can
deal with vanishing gradient problem.

RNN: more computation time, hard for
training, gradient vanishing problem.
LSTM: Requires more time and resources
for training.

Zhao et al. (2019) Udmale and Singh
(2019)

KNN Machine
Learning

KNN is an algorithm where k denotes
the number of nearest neighbors
used to predict the class of a sample.

Faults like
Unbalance,
bearing faults

98.61% (Xia et al.,
2018)

No training period, simple, new data
can be added easily

Not suitable for large dataset, sensitive
to noisy data, need feature scaling

Jablon et al. (2020) Xia et al. (2018)

(continued on next page)
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Table 13 (continued).
Algorithm Algorithm

type
Definition Diagnosis

application
Accuracy Advantages Limitations Ref.

SVM Machine
Learning

It provides a boundary in the input feature
space by considering patterns and relationships
on the inputs. Boundaries are then used to
create a decision rule used for classification

Faults like
Unbalance,
bearing, mis-
alignment,
wind turbine

98.83%
(Xia
et al.,
2018)
80%
(Janssens
et al.,
2016)

Better performance for adequate sample
size, semi and unstructured data, high
dimensional data

Depends on the penalty parameter which
is selected by the trial and error method,
a standard kernel function is not defined

Jablon et al. (2020) Xia et al. (2018)
Janssens et al. (2016)

Random
forest

Machine
Learning

RF is an ensemble learning method for
classification, a regression that operates by
constructing a multitude of decision trees at
training time and outputting the class that is
the mode of the classes (classification) or
mean/average prediction (regression) of the
individual trees

Faults like
unbalance in
the rotor,
bearing,
impeller,
blower

87.2%
(Janssens
et al.,
2016)

Reduces overfitting, flexible, it
automates missing value present in data

Need high computational power, time
for training suffers interpretability and
fails to determine the significance of
each variable

Raina et al. (2007) Janssens et al.
(2016)

Extreme
Learning
Machine
(ELM)

Machine
Learning

ELM is a feedforward neural network for
classification, clustering, regression, with a
single layer or multiple layers of the hidden
node

Fault in
bearings,
gearbox

98.84%
(Udmale
and
Singh,
2019)
95.40%
(Pan
et al.,
2019)

Short training time, simple to use Overfitting Udmale and Singh (2019) Pan et al.
(2019)
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Table 14
Contribution of hybrid PdM approach for fault diagnosis of rotating machine.

Algorithm Hybrid PdM
approach

Definition Diagnosis
application

Ref.

Fuzzy logic +
NN

Knowledge-based
+ Data-driven

Fuzzy logic is an approach to variable processing
that allows for multiple values to be processed
through the same variable.

Gearbox faults,
RUL prediction

Satish and Sarma (2005)

Fuzzy logic +
Wavelet neural
network

Knowledge-based
+ Data-driven

Wavelet networks are a new class of networks that
combine the classic sigmoid neural networks (NNs)
and the wavelet analysis (WA).

RUL prediction
of bearing

Zhang et al. (2002)

EMD + PSO +
SVM

Hybrid of
Physics-based
model

Empirical Mode Decomposition performs
operations that partition a series into ’modes’
(IMFs; Intrinsic Mode Functions) without leaving
the time domain. Particle Swarm Optimization is a
computational method that optimizes a problem by
iteratively improving a candidate solution
concerning a given measure of quality.

Pump fault, RUL He et al. (2012)

Fuzzy logic +
Focused TLFN

Knowledge-based
+ Data-driven

In the Feedforward Neural network, the
information moves in only one direction from the
input nodes, through the hidden nodes (if any)
and output nodes. Thus, there are no cycles or
loops in the network.

Cutting tool
monitoring, RUL

Chinnam and Baruah (2004)

Fuzzy logic +
Kalman filter

Knowledge-based
+ Data-driven

Kalman filtering is an algorithm that provides
estimates of some unknown variables given the
measurements observed over time.

Actuator fault,
RUL

Swanson (2001)

SVR + HMM Hybrid
data-driven
approach

The Support Vector Regression uses the same
principles as SVM for classification. However,
it allows us to define how much error is
acceptable in our model and find an appropriate
line to fit the data.

Bearing RUL Liu et al. (2012)

MLP + RBF +
KF

Data-driven +
Physics-based
approach

Multi-layer Perception is a class of Feedforward
NN which refers to networks composed of multiple
layers of perceptrons. A radial basis function is a
real-valued function whose value depends only on
the distance between the input and some fixed
point, either the origin or another fixed point
called the center.

RUL prediction Peel (2008)

GPR + KF/PF Data-driven +
Physics-based
approach

Gaussian process regression is nonparametric,
Bayesian approach to regression that is making
waves in machine learning. Particle
filters or Sequential Monte Carlo (SMC) methods
are a set of Monte Carlo algorithms used to solve
filtering problems arising in signal
processing and Bayesian statistical interference.

RUL prediction Celaya et al. (2014)

SK + ELM Data-driven +
Physics-based
approach

The spectral kurtosis (SK) is a statistical tool that
can indicate the presence of series of transients
and their locations in the frequency domain.

Bearing faults Udmale and Singh (2019)
multiple data-driven approach using HMM and SVR to predict the RUL
of bearings again. Celaya et al. (2014) proposed a hybrid data-driven
and physics-based approach using GPR and KF/PF to predict the RUL
of power devices. The experimental results from all these studies show
that the hybrid approach yields better results than other independent
approaches. Hybrid approaches boost the advantages and conceal the
disadvantages of different independent approaches to yield a better
diagnosis. However, there are a few challenges while employing the
hybrid approach. This includes which kind of approach is appropriate,
availability of data and other resources, proper fusion technique of the
data as the data can be of various types, with different sampling rates,
etc.

3.6.1. Machine learning styles
Machine learning emphasizes ‘‘learning’’, because of which there

are different Machine learning techniques available. It is vital to know
what type of Machine learning can be used in the fault diagnosis of
rotating machines. These techniques are broadly classified as learning
problems, hybrid-learning problems, statistical inference, learning tech-
niques, and other important learning approaches (Brownlee, 2019; Sah,
2020). First are the three main learning problems in machine learning:
supervised, unsupervised, and reinforcement learning (Nacchia et al.,
2021). The term ‘‘supervised learning’’ refers to an issue in which a
27
model is used to learn a mapping between input instances and the
target variable. In this case, class labels should be available in advance.
Also, the class labels are extremely biased to normal class, whereas the
anomalies appear rarely. Unsupervised learning refers to a set of issues
in which a model describes or derives relationships from data. Here,
the models treat instances that fit least to the majority as anomalies.
Also, the model learns from partially labeled normal data and scale
anomaly to the difference between an unseen pattern and the learned
normal pattern. The difficulty here is that most of the machinery data
is sequential and collected over a longer period. However, prediction
over a longer sequence may be challenging as the length of the in-
put sequence can vary. Reinforcement learning (Koprinkova-Hristova,
2013) is a type of online learning that simultaneously combines the
learning and action phases and has a self-optimizing characteristic.
The distinction between unsupervised and supervised learning is hazy,
and several hybrid techniques include elements from both fields like
semi-supervised, self-supervised, multi-instance learning, etc.

Semi-supervised learning (Du Toit, 2014) employs unlabeled in-
stances to aid in learning the probability distribution over the input
space. It also simultaneously optimizes the prediction over labeled and
unlabeled examples. Self-supervised learning (Wu et al., 2021) is a
representation learning approach in which unlabeled data is used to
construct a supervised task. Self-supervised learning is used to lower the
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Fig. 17. Overview of various machine learning styles.
xpense of data labeling and use the unlabeled data pool. Contrastive
earning (Rombach et al., 2021), a type of self-supervised learning,
dentifies comparable and dissimilar objects for an ML model in a dif-
erent way. The fundamental goal of contrastive learning is to develop
epresentations that keep comparable samples near together while a
arge distance separates different samples. Contrastive learning is one of
he most powerful techniques in self-supervised learning when working
ith unlabeled data. Multi-instance learning is a supervised learning
roblem in which individual instances are not labeled, but bags or
roups of samples are.

The process of arriving at a conclusion or judgment is known as
nference. Both fitting a model and making a prediction are examples
f inference in machine learning. It is the next category of learning,
ncluding techniques such as Inductive Learning, Deductive Inference,
ransductive Learning, etc. Inductive learning (Michalski, 1983) entails
etermining the result based on evidence. The deduction, also known
s deductive inference (Sammut and Webb, 2010), uses general rules to
rrive at specific conclusions. In the realm of statistical learning theory,
he term ‘‘transduction’’ or ‘‘transductive learning’’ (Bražinskas et al.,
021) refers to predicting particular cases given specific examples from
domain.

There are several strategies classified as learning techniques. It
ncompasses multi-tasking, active learning, online learning, transfer
earning, and ensemble learning. Multi-task learning (Allah Bukhsh
t al., 2020) is a form of supervised learning in which a model is
itted to a single dataset to solve numerous related tasks. Active learn-
ng (Tham and Rajagopalan, 2020) is an approach in which the model
ay ask a human user operator question throughout the learning
rocess to clarify ambiguity. Online learning entails using the data at
and and updating the model immediately before making a prediction
r after the final observation. Transfer learning (Han et al., 2021) is
form of learning in which a model is initially trained on one task

nd then utilized as the starting point for another activity. Ensemble
earning (Zhang et al., 2015) is a technique in which two or more
odels are fitted to the same data, and their predictions are pooled.

Apart from these, there are many other techniques for machine
earning such as meta-learning, continual learning, feature learning,

ederated learning, rule-based machine learning, multi-view learning,

28
self-taught learning, deep learning, and many more. Learning algo-
rithms that learn from other learning algorithms are called meta-
learning (Feng et al., 2021) in machine learning. A model’s capacity
to learn continuously from a data stream is known as continual learn-
ing (Parisi et al., 2019). In reality, this means enabling a model to learn
and adjust autonomously in production as new data arrives. Feature
learning (Nithin and Sivakumar, 2015), also known as representation
learning, is a collection of machine learning algorithms that allow a
system to automatically find the representations needed for feature
detection or classification from raw data. It eliminates the need for
human feature engineering by allowing a machine to learn and use
features to fulfill a given activity. Federated learning (Mohr et al.,
2020) is a technique for training machine learning algorithms across
numerous edge devices without exchanging training data. Federated
learning, as a result, provides a novel learning paradigm in which
statistical techniques are taught at the network’s edge. The rule-based
machine learning approach of association rule learning identifies in-
teresting relationships between variables in big databases. Multiview
learning (Huang and Liu, 2020), also known as data fusion or data
integration from various feature sets, incorporating several perspectives
to increase generalization performance. Self-taught learning (Raina
et al., 2007) is a new paradigm in machine learning. It uses labeled data
belonging to the desired classes and unlabeled data from other, some-
how similar classes. Many machine learning researchers have endorsed
newer advances such as Deep Learning (DL) (Tang et al., 2020). Due to
its improved capacity to describe system complexity, DL has emerged as
a viable computational tool for dynamic system prediction, overcoming
the drawbacks of conventional techniques. In deep architecture, it is a
machine learning approach that learns many levels of representations.
Out of all the learning techniques, Supervised learning for classifica-
tion (forecasts if the following n-steps have a chance of failure) and
regression (to predict Remaining Useful Life), unsupervised learning
(for anomaly detection), reinforcement learning, hybrid learning meth-
ods, transfer learning, ensemble learning, deep learning, meta-learning,
ensemble learning, etc. are widely used. Fig. 17 summarizes all the
machine learning techniques discussed above.
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Fig. 18. Implementation stack of AI for multi-fault diagnosis of rotating machines.
3.6.2. Steps to implement AI model in fault diagnosis of rotating machines.
The implementation stack of AI for multiple fault diagnosis is de-

picted in Fig. 18. The figure is divided into several layers connected
through a single directional road map. Each layer reveals a specific
task accomplished via a particular set of either hardware or soft-
ware or protocols or data stores. The first and the primary layer is
the physical layer that includes the machine under test, the different
sensors, the data communication medium, and the data acquisition
system. Before moving ahead, it is essential to decide whether cloud
computing or edge computing will be employed in fault diagnosis. Data
pre-processing is the next important task that involves data storage,
feature extraction, and data fusion. The next step is implementing the
data analysis using ML/DL algorithms to achieve an accurate diagnosis.
It includes training, testing, and validation of the algorithm and the
results obtained. Once the diagnosis results are obtained, the final step
is to convert the model to optimized C code to be implemented on
the microcontroller. The advantages of using microcontrollers are: they
consume low energy, are cheap, they are flexible, and most impor-
tantly, they have high security. Some widely used microcontrollers
include Coral Dev Board, NVIDIA® Jetson Nano TM Developer Kit,
Raspberry Pi 4 computer model B, etc.

4. Discussion

With Artificial Intelligence (AI) advancement, a data-driven ap-
proach for predictive maintenance is taking a new flight towards smart
manufacturing. This approach for multiple fault diagnosis in Industrial
Rotating Machines is a never-ending research field. The literature
review has developed new insight into the various aspects that a
researcher should know before taking a step in this field. In this regard,
let us discuss the survey outcome in the following subsection.
29
4.1. Survey outcome

Let us analyze the survey outcome concerning the various aspects
studied in the literature through Table 15. Finally, Fig. 19 gives the
summary of the literature review.

4.2. Challenges and limitations in multi-fault diagnosis

The challenges and limitations of multi-fault diagnosis are dis-
cussed in this paper that may aid in further research. Table 16 gives
a systematic overview of the challenges and limitations.

4.3. Advancements in data-driven multi-fault diagnosis in the context of
Industry 4.0

Artificial intelligence progress is genuine and occurring with the
technology finding extensive use in nearly every industry. In such
industries, Predictive maintenance, which is a method of gathering,
analyzing, and utilizing data from different industrial sources such as
machines, sensors, and switches, uses intelligent algorithms to analyze
data to predict equipment failure before it occurs. Companies are
already using continuous monitoring technologies like the Internet of
Things (IoT). However, the key to increasing company efficiency is go-
ing beyond simply monitoring the output of multiple technologies and
using powerful techniques in machine learning to act on real-time in-
sights and improve upon significant issues faced by current techniques.
Predictive maintenance is at the heart of industrial innovation, and
it entails rethinking and optimizing the whole maintenance approach
from top to bottom. AI-led approaches have addressed some open is-
sues in the multi-fault diagnosis of rotating machines. These approaches
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Fig. 19. Complete summary of literature review.
Table 15
Survey outcome discussion.

Survey topic Outcome

Maintenance strategy Maximizing equipment reliability and facility
performance while balancing the related resources
used and, consequently, the cost is the goal of a
good maintenance strategy. In this regard, there is
a need to blend all the maintenance philosophies
to provide the best strategy that would increase
the RUL of the machine, Predictive maintenance
being the core of all.

Data source There are online datasets available. However, the
best choice regarding validity and accuracy is to
yield an accurate diagnosis, design a test setup,
and collect data manually to train the AI models.

Sensors Sensor fusion refers to the capacity to combine
data from various sources and sensors to create a
single model or representation of the world
surrounding the machinery. Because the strengths
of the many sensors are balanced, the final model
is more accurate.

Data acquisition There are a variety of data acquisition options
available. One must choose a suitable system based
on the application and compatibility. It is always
better to decide the data acquisition method before
the purchase of sensors and other apparatus.

Signal processing Feature selection is critical in signal processing.
For non-stationary signals, which are very common
while machinery failure, features from the
time–frequency domain need to be used for better
results.

AI techniques Hybrid data-driven approaches boost the
advantages and conceal the disadvantages of
different independent AI techniques to yield a
better diagnosis.
30
include generative adversarial networks, explainable AI, transfer learn-
ing, domain adaption, digital twin, adversarial machine learning, and
domain adaptability. Fig. 20 depicts some of these challenges and the
solutions given by these approaches.

4.3.1. Generative Adversarial Networks (GAN)
Sensors installed to collect machine condition data might malfunc-

tion due to inadequate power supply. The data might differ due to
constantly changing conditions in the manufacturing industries, leading
to data shortage. The highly unbalanced training data, the extremely
high cost of obtaining more failure examples, and the intricacy of
the failure patterns can also add to further challenges. GAN starts by
using two GAN networks to produce training samples and develop an
inference network that may be used to forecast new sample failures.
GAN is used to synthesize virtual artificial data, an unsupervised learn-
ing approach involving the interaction of two neural networks (Liu
et al., 2020b). The GAN is made up of two parts: a generator and a
discriminator. The generator’s job is to create synthetic data as close
to the actual sample as feasible, while the discriminator’s job is to
separate real samples from fake samples as much as possible. The
schematic of GAN is as shown in Fig. 21 (Liu et al., 2020b). Mode
collapse, Non-conversions, instability, and Evaluation matrix issues are
some of the challenges in implementing GANs (Saxena and Cao, 2020).
One possible study direction is to investigate how these approaches
might be applied to more complicated datasets containing vibration and
time-series data (Fink et al., 2020).

4.3.2. Explainable AI (XAI)
As the industries are turning towards automation, users are pro-

gressively outsourcing more jobs to computers. Users may find it chal-
lenging to grasp such complicated systems since they are generally
developed utilizing ‘‘black box’’ Artificial Intelligence (AI). Traditional
black-box AI algorithms might be more transparent by offering expla-
nations of the findings or building explainable and interpretable AI
solutions for Industry 4.0 applications (Wagle et al., 2021). Future
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Table 16
Challenges and limitations of multi-fault diagnosis in industrial rotating machines.

Challenges Issues Impact on multi-fault diagnosis

Data related challenges Data
availability

Machines with a wide range of dynamic operating
circumstances might lack complete data with a
comparable distribution for fault diagnosis.

Data
accessibility

Failure to access high-quality data in a defined format for
AI models may harm the models’ performance.

Data quality Due to a lack of access to high-quality data, firms and
governments may be forced to develop subpar AI systems
for fault diagnosis systems.

Data acquisi-
tion/transmission

If appropriate and high-speed communication and data
acquisition systems are not available, critical information
may be truncated.

Single sensor
data

If only one type of data is used to train the AI model, it
may not be effective. The diagnosis is incomplete by
depending on the single type of data.

Cost for data
collection

Due to the high cost of machinery parts, it is challenging
to run the machinery until failure for data collection.

AI model
related
challenges

Class imbalance This happens mostly because healthy data is much more
than fault data.

Model inter-
pretability

Inability to understand why a particular diagnosis was
given at a specific point in time due to a lack of model
interpretability

Adversarial
perturbation

In the case of essential equipment, AI models are
vulnerable to adversarial perturbations, which might
further weaken the credibility of fault diagnosis

Inefficiency of
the model for
similar (not
exact) data.

The data is never the same for training and testing due
to broad operating conditions and circumstances in an
Industrial environment.

Network and
security

Cloud computing Concerns about security, privacy, and real-time
performance may arise while using cloud computing. As a
result, it is necessary to verify the dispersed resource
sharing of critical industrial data.

Privacy of
the data

Designing safe and hack-free durable intelligent
diagnosis is a significant problem due to its complexity.
Fig. 20. Summary of challenges and the corresponding advancements in AI models.
31
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Fig. 21. GAN architecture.
Fig. 22. XAI architecture.
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esearch into Explainable AI (XAI) in predictive maintenance is criti-
al since interpretability and clarity are essential aspects for building
redibility and security. Galanti et al. (2020) suggested an explain-
ble AI solution for process monitoring. On real industrial benchmark
atasets, the suggested solution is assessed. Rehse et al. (2019) have
lso examined the challenges and possible applications of explainable
I in Industry 4.0 in great depth. Defining the relevant evaluation
echanisms, procedures, measures, and methods are some of the chal-

enges in Explainable AI. The quality, usefulness, and satisfaction of the
xplanations, and the influence of explanations on the model’s success
re all factors to consider when evaluating the XAI (Barredo Arrieta
t al., 2020). Fig. 22 (Vilone and Longo, 2020) shows the architecture
o implement XAI.

.3.3. Transfer Learning (TL)
Transfer learning is the concept of breaking out from the isolated

earning paradigm and using what has been learned to tackle related
roblems. Due to constantly changing conditions in manufacturing
nits, the data is never the same, but it can be similar. Transfer
earning (TL) methods can enhance model accuracy for pre-and post-
odel deployment in dissimilar data distribution across the source

nd target domains. Fig. 23 (Xu et al., 2019) is an architecture of
igital Twin assisted transfer Learning. The paper’s authors devised a

echnique known as Digital-twin-assisted Fault Diagnosis using Deep
ransfer learning (DFDD). In the first phase, the potential problems that
re not considered at design time were discovered by front running the
ltra-high-fidelity model in the virtual space. In contrast, a Deep Neural
32
etwork (DNN) based diagnosis model was fully trained. In the second
hase, the previously trained diagnosis model was migrated from the
irtual to physical space using Deep Transfer Learning (DTL) for real-
ime monitoring and predictive maintenance. Implementing transfer
earning for multiple fault diagnosis is currently an emerging research
rea.

.3.4. Digital Twin (DT)
The goal of a Digital Twin is to construct a very accurate virtual

eplica of a physical system or process to mimic system behavior, con-
ition monitoring, unusual pattern identification, system performance
eflection, and future trend projection (Kumar et al., 2020). The ability
o produce simulated data is one of Digital Twin’s features. Infinite
ycles of situations must be run in a simulated environment. The
imulated data collected may subsequently be utilized to successfully
rain a naive AI model on the various elements of manufacturing
perations. The digital twin’s next skill is finding, planning, and testing
ew features that may be utilized to supplement data operations in a
achine learning process. Finally, a digital twin can help with data aug-
entation for imbalanced datasets. DT is extensively used for predictive
aintenance, fault diagnosis, detecting system abnormalities, inferring
roduct quality, real-time system monitoring, and so on (Xu et al.,
019; Luo et al., 2020; Tong et al., 2020b). Fig. 23 (Xu et al., 2019)
s an architecture of Digital Twin assisted transfer Learning. However,
igital twin challenges are accurately capturing physical properties,
roject collaboration, automatic real-time updating, conflict detection
nd resolution, and interaction with digital and physical items. Digital
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Fig. 23. Digital Twin assisted transfer learning.
Fig. 24. Adversarial domain adaptation architecture.
win enabled fault diagnosis can be implemented, which can help
everage the real-time and wholistic information related to machinery
iving feedback between the real and digital world at every stage.

.3.5. Domain Adaptation (DA)
Fault diagnostic models are created with a specific machinery con-

iguration in mind, but there may be a situation when they need to
e applied to a different machinery design. The new equipment con-
iguration may affect the model prediction accuracy, which is typically
ifferent from the prior one. The change in data can also happen due
o collecting the training and test sets from different sources or having
n outdated training set due to data change over time. In this case,
here would be a discrepancy across domain distributions, and naively
pplying the trained model on the new dataset may cause degradation
n the performance. Domain Adaption (DA) can aid in such issues and
mplement efficient extraction of features from unlabeled equipment
ata, which is a prevalent problem in most real-time industrial applica-
ions (Ainapure et al., 2020). The author in Li and He (2020) presented
unique RUL prediction technique based on a deep convolutional neu-

al network (DCNN) coupled with Bayesian optimization and adaptive
atch normalization (AdaBN). The results also demonstrate that the
rediction model’s domain adaptability capacity has improved. One of
he most common techniques to transfer learning is domain adaptation,
33
which assumes that the label spaces of the source and destination do-
mains are similar. The architecture and concept of domain adaptation
presented by Liu et al. (2020a) are shown in Fig. 24 (Liu et al., 2020a).
Heterogeneous unsupervised domain adaptation is a naïve emerging
field to be worked on in the future.

4.3.6. Adversarial ML
While certain machine learning models are good at predicting pre-

dictions, they may not be good at detecting unlawful intrusions. Adver-
sarial Machine Learning (AML) models protect the model structure from
adversarial assaults that endanger the predictive maintenance frame-
work’s resilience. Kumar et al. (2019) provides a list of adversarial
ML attacks, from which the top four attacks with the most industrial
impact are poisoning attack, Evasion attack, Trojan attack, and model
extractions/ stealing attack. The findings in Li and He (2020) show that
CBM systems are vulnerable to adversarial machine learning assaults,
necessitating security measures. According to the timing of the attack,
the approaches employed by hackers for adversarial machine learning
may be classified into two categories: Data Poisoning: To deceive the
output model, the attacker modifies the labels of certain training input
instances. Model Poisoning: After the model is constructed, the hacker
causes it to provide incorrect labeling by utilizing a perturbed instance.
The adversarial machine learning attack is depicted in Fig. 25 (Abadi,
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Fig. 25. Example of adversarial ML attack.
Fig. 26. The architecture of multi-modal perception with data fusion and analysis.
021; Catak and Yayilgan, 2021). Blockchain-enabled (Shidne et al.,
021) reliable machine condition monitoring and fault diagnosis model
an be a domain for future research.

.3.7. Multi-modal data fusion
Compared to single modalities (i.e., unimodal) systems, multimodal

eep learning systems employ several modalities, including vibration,
emperature, pressure, AE, etc., and perform better. Representation,
ranslation, alignment, fusion, and co-learning are all aspects of mul-
imodal machine learning. Some of the challenges in the multimodal
nalysis include missing modalities, noisy data, a lack of annotated
ata, inaccurate labeling and scarcity during training–testing, domain
daptability for diverse datasets, and interpretability of results (Rahate
t al., 2022). Fig. 26 (Yang and Zhang, 2019) shows the multi-sensor
ata collection for Multi-Modal Data Fusion (MMDF). From a future
erspective in the context of Industry 4.0, the majority of multi-modal
ata in smart manufacturing setups must be gathered in dynamic
ettings, implying that the data itself varies. Also, it should rate the
ssential modalities in the diagnosis of the fault.

. Recommendations for future work

Apart from the above-mentioned future research work in each cur-
ent advancement, the authors would like to suggest a few other
ossible research directions in Data-Driven Multi-fault diagnosis of
ndustrial rotating machines. Table 17 describes the research gap iden-
ified and the corresponding future direction for the upcoming research.
t should be mentioned that the range of this study is limited to a
ample of research journals and keywords. It is proposed that the
rocedure outlined here be repeated for the same research theme in
he future, with more databases taken into account.
34
6. Conclusion

This study focuses on data-driven predictive maintenance in in-
dustrial rotating machinery for multi-fault detection. According to the
available literature, multi-fault diagnosis is still a developing field with
much room for advancement in Industry 4.0. The study examines
several open research topics that researchers in this field are grappling
with by implementing a systematic literature review on a Data-driven
approach for multi-fault diagnosis of Industrial Rotating Machines.
This review was implemented using the ‘‘Preferred Reporting Items
for Systematic Reviews and Meta-Analysis’’ (PRISMA) method. The
article discusses all aspects of the physical layer: the machinery and the
sensors, followed by the various data acquisition methods employed to
collect the data. There is also a systematic analysis of available online
datasets in this field. The paper has also focussed on signal processing
techniques, mainly feature extraction methods such as time domain,
frequency domain, and time–frequency domain features. Authors have
also covered the topic of multi-sensor data fusion at different levels,
viz., the data-level, feature-level, and decision-level fusion. There is
also a great focus on various data-driven and hybrid approaches imple-
mented by the previous researchers. Covering the recent advancements
in a data-driven approach for multi-fault diagnosis, the authors have
identified the significant challenges faced in this domain and given the
corresponding solution. Finally, the authors conclude the paper with
the infographic diagram covering all the above aspects and addressing
the future scope in the domain. The authors have tried to evaluate all
aspects of data-driven multi-fault diagnosis in predictive maintenance
and believe that this survey will assist the researchers, the essential
background in future research directions.



S. Gawde, S. Patil, S. Kumar et al. Engineering Applications of Artificial Intelligence 123 (2023) 106139
Table 17
Research gap and future direction for multi-fault diagnosis in industrial rotating machines.

Sr. No. Research gap Future direction

1 Robust data collection is lacking as the researchers
mainly focus on either online data (which is unimodal)
or not considering the multi-modal aspect of the data.

There is a need to use multi-sensor data fusion or
multimodal analysis to experiment with multi-fault
diagnosis in predictive maintenance.

2 There is extensive research on bearing faults. However,
industrial rotating machines also have faults like
unbalance, misalignment, looseness, etc., which are
related to each other. They are equally essential to be
considered along with bearing faults for the study to be
complete.

Research should now focus on the
multi-fault aspect of fault diagnosis in
rotating machines.

3 Exhaustive research has been implemented using standard
datasets available online. However, real-time industrial
conditions are continuously changing. That is why most
AI models fail when they are implemented in a real-time
industrial environment.

There is a high need to use domain Adaptation and
transfer learning to the models to reduce the domain
dependence of the model. Also, one must consider
industrial conditions while working on their test setup
(avoid online data) generating benchmark datasets.

4 Validating the proposed algorithm or model
in the real-time industrial environment
lacks most of the articles published.

There is a need to prove the algorithm’s
accuracy by validating it in a real-time
industrial environment.

5 Research in Digital twin +predictive
maintenance is very little and still in the
phase of development.

Digital twin, emerging technology and very
effective in predictive maintenance, is a
new challenge for upcoming researchers.

6 Many researchers use a data-driven model or a
model-based technique to compute the fault diagnosis,
which may contain prediction mistakes due to individual
models’ uncertainty.

A hybrid data-driven strategy combined
with hybrid decision-making algorithms
might reduce fault prediction mistakes.

7 Changes in sensor operating conditions, disruption due to
big equipment starting, high-frequency interference, and
other factors taint sensor signals. As a result, it is
difficult to eliminate or filter noise from raw signals.
Also, the dataset is imbalanced or missing.

Integrated de-noising based on energy-correlation analysis
and wavelet transform packet can be used to overcome
industrial sensor signal de-noising. GANs can also be
implemented to generate missing data or imbalanced data
synthetically.

8 Model optimization is needed. Reinforcement learning, an ML technique where the
model learns through trial and error to choose the best
course of action, can be used for model optimization.

9 As discussed earlier, cloud computing is prone to
several security issues where AI/ML models can be
attacked in several ways.

The development of adversarially resilient AI/ML models
for industrial applications is still a topic of research that
has to be addressed. Balance of cloud, as well as Edge
computing, can also be one of the solutions. Edge
computing allows data to be processed locally (i.e., near
the collecting devices), reducing bandwidth and latency
significantly, and it is also more secure.

10 There is also a need to know why an AI
model has come up with a particular
decision.

Explainable AI is also a potential future
direction to focus on, as discussed
earlier.

11 IoT devices are anticipated to exceed several
trillion in the following years, posing significant
performance and data monitoring problems
(Younan et al., 2020).

Another critical challenge that might be
investigated in the future is scalability.

12 Energy and hardware constraints are
two of the most critical roadblocks to
ML adoption in Industry 4.0.

Research is required to improve and optimize energy
usage and conservation in IoT devices (Younan et al.,
2020). In addition, real-time ML through online or
incremental learning can also be further studied.

13 Representation of a large amount of
data generated from multiple sensors is
challenging to manage.

Knowledge Graphs (set of datapoints linked by relations)
is a powerful way of representing data that can be built
automatically and can then be explored to reveal new
insights about a domain (Hossayni et al., 2020).
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