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Abstract

Clustering is a technique of grouping the data objects into clusters. Many metaheuristic
algorithms based on swarm intelligence, physic laws, and chemical reactions, among
others, have been developed for clustering. In this study, an enhanced whale optimi-
zation algorithm (EWOA) is introduced to solve clustering problems. The whale
optimization algorithm (WOA) is adapted and enhanced with two additional opera-
tional procedures. The position update equations from the water wave optimization
algorithm are incorporated into the algorithm to improve the search space and accel-
erate the convergence rate. The tabu and neighbourhood search mechanisms were
added to handle the local optima situation. The efficiency of the proposed EWOA is
measured using a simulation-based experiment conducted on eight benchmark
datasets, and the results obtained are then compared to seven existing clustering
algorithms/techniques. The performance of each algorithm is compared and analyzed
using the average intra-cluster distance and f-measure parameters. The experimental
results demonstrated the applicability and feasibility of the enhancements that were
made and proved the superiority of the proposed EWOA clustering algorithm.
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1 Introduction

Data mining is a procedure that pulls previously unknown patterns or information from
databases. It is also characterised as a descriptive analytics approach known as clustering,
which discovers patterns based on specified dissimilarity criteria [9]. Due to extensive
applicability, clustering has captured the attention of research communities who have
worked to develope several evolutionary metaheuristic algorithms to solve clustering
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problems (Dorigo et al. [5]; Cura [4]; Kumar and Sahoo [18-20]; Karaboga and Ozturk
[16]; Hatamlou et al. [13]; Hatamlou [11]). Clustering methods optimally divide a set of
data objects and retain them in clusters (Nanda and Panda [26]; Mat et al. [22]). The
clustering process is carried with the help of some dissimilarity measures. The Euclidean
distance given in Eq. (1) is an extensively accepted similarity measure in the partitional
clustering techniques. It is described as a sum of the square root of the difference between
data objects and the cluster centres. The data objects are tailored into the clusters according
to the distance values.

D(Z,',Cj) = (Zikacj )2 (1)

1

T
TTM&

where Z; symbolizes the ith data instance/object, C; represents the jt cluster centre/centroid,
whereas n and d denote the number of instances/data objects and dimension/attribute in the
dataset, respectively.

In this study, an enhanced version of the whale optimization algorithm (WOA)
is proposed to find optimized cluster centres. The WOA is a nature-inspired
method that simulates the foraging behaviour of humpback whales (Mirjalili and
Lewis [24]). The original WOA suffers from various issues such as the ones
listed below:

* Convergence rate: The convergence rate is concentric around the search space mecha-
nism and the coordination among exploration and exploitation processes is lacking (Kumar
and Sahoo [19]).

* Local optima: It is a situation when the candidate solution is not getting an
update and primarily occurs due to the absence of a population divarication
mechanism. It is observed that the original WOA suffers from local optima
(Kumar and Kaur [17]).

To overcome these and other problems that are inherent in the original WOA, this study
proposes an improved algorithm called the Enhanced Whale Optimization Algorithm
(EWOA). The EWOA is adapted from the original WOA and enhanced with two additional
operational procedures to accelerate the convergence rate and overcome the local optima
situation. To accelerate the convergence rate, position update equations from the water
wave optimization algorithm are incorporated into the algorithm to improve the search
space, while the tabu and neighbourhood search mechanisms were incorporated to over-
come the local optima situation. The efficiency of the proposed EWOA is measured using a
simulation-based experiment conducted on eight benchmark datasets, namely the Iris,
Cancer, CMC, Wine, Glass, Thyroid, LR and ISOLET datasets, and the results obtained
are then compared to seven existing clustering algorithms/techniques, namely the Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Cat Swarm Optimization
(CSO), Genetic Algorithm (GA), Advanced Chemical Reaction Optimization (ACRO),
WOA, and K-means algorithms. The performance of each algorithm is compared and
analyzed using the average intra-cluster distance and f-measure parameters. The applica-
bility and feasibility of the proposed algorithm is demonstrated via the experimental study
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that has been carried out in this paper. The experimental results highlighted the enhance-
ments that were made and proved the superiority of the proposed EWOA clustering
algorithm.

The core contributions of this study are summarized as follows:

i). Introduced the EWOA as an improvement to the original WOA by incorporating
some key enhancements to overcome the problems that are inherent in the the
original WOA.

il). Incorporate tabu and neighbourhood strategy to handle local optima situations.

iii). Incorporate the position update equations from the water wave optimization algorithm to
improve the search space, minimize the intra-cluster distance and accelerate the conver-
gence rate.

iv). Demonstrate the feasibility and applicability of the proposed EWOA model by imple-
menting the algorithm in solving cluster analysis problems using eight experimental
benchmark datasets.

v). Proved the superiority of the proposed EWOA model by comparing the results of the

experimental study obtained via the proposed EWOA model and seven other well-known
clustering algorithms.

This paper is divided into 6 sections. The literature review and related works is presented in
Section 2, while Section 3 describes the background details of the algorithms and methods that
are employed in this paper. The improvements and enhancements that were done to the
algorithm are detailed in Section 4, while the experimental study and the results that were
obtained are presented in Section 5. Concluding remarks and the future scope of this study is
presented in Section 6, followed by the list of declarations, acknowledgments and the list of
references.

2 Literature review

Several algorithms have been developed, hybridized, and improved in the past few
decades to solve clustering problems. Some of them are expounded in this section.
Premalatha and Natarajan [27] proposed a PSO algorithm with an enhanced discrete
binary PSO, where the model was tested using three datasets and compared with the K-
means clustering algorithm, and the outcome was an improved execution and more
diversity in the swarm. Kao et al. [15] studied partitional clustering problems using a
hybrid optimization solution, while Chang et al. [3] eliminated the local optima and
premature convergence problems of the standard genetic algorithm with their proposed
gene rearrangement strategy. Jiang and Wang [14] presented a cooperative coevolution
framework for BPSO algorithms, in which cooperative coevolution was used to de-
compose the problem into K subproblems, while PSO was used to solve these prob-
lems. Wang et al. [38] proposed a chaotic KH hybridized clustering method which had
a better convergence speed. Kumar and Sahoo [18] proposed a hybrid data clustering
algorithm by combining CSO and K-harmonic means algorithms, tested it against
various existing algorithms, and concluded that the proposed hybrid model has im-
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proved convergence speed. Kumar and Sahoo [19] introduced another hybrid algorithm
that combined the PSO and MCSS algorithms, in which this hybrid model employed
the neighbourhood technique to improve the search process. Menéndez et al. [23]
proposed a multi medoid-based ACO clustering algorithm that automatically deter-
mines the optimum number of clusters and works without predetermined criteria, i.e.
the number of clusters. Hatamlou [12] hybridized the PSO and the big bang-big crunch
(BB-BC) algorithms to overcome the local optima and premature convergence
problems.

Zhang et al. [41] and Karaboga and Ozturk [16] studied the use of the ABC algorithm
that simulated the intelligent foraging behaviour of honey bee swarms in clustering
problems and proved that the ABC algorithm is indeed efficient for solving multivariate
data clustering problems. Yan et al. [40] introduced a hybrid variant of the ABC
algorithm for solving clustering problems, in which the crossover operator of GA is
integrated with the ABC algorithm to accelerate its convergence speed and achieve
optimality in the solution faster. Alshamiri et al. [2] integrated the extreme learning
machine (ELM) model into the ABC algorithm, in which the ELM model will project
the input data into a high-dimensional feature space, while the ABC algorithm will
perform the partitions. Kumar and Sahoo [20] proposed an efficient two-step ABC
algorithm, in which the K-means algorithm is used to identify the initial seed points
or food sources for the ABC algorithm.

Senthilnath et al. [31] implemented the firefly algorithm that simulates the social
insects’ behaviour and flash pattern of fireflies in solving clustering problems. Hatamlou
[11] introduced a black hole (BH) phenomenon-based algorithm for clustering, in which
the search space is defined in terms of the black hole, stars, and their absorption
mechanism. The efficiency of the BH-based method was tested using standard datasets
and was proven to be an effective clustering technique. Wang et al. [39] proposed a bee
pollinator with a flower pollination algorithm to improve searchability and achieve
faster convergence. Siddiqi et al. [32] introduced a new hybrid model that integrated
the GA and SimE algorithms to automate the partitional clustering process. A greedy
method is first applied to select the initial seed points, and optimization methods are
then implemented to optimize them. Kushwaha et al. [21] proposed a magnetic force-
based clustering algorithm in which a magnetic force-based search mechanism is
implemented to find the optimal cluster centres. The data points are considered as
particles and get rendered due to magnetic forces. The optimum position for the centroid
particles is said to be achieved when the magnetic force applied by the data points
approaches zero.

To automate the clustering process, Zhou et al. [43] projected the simplex method in
the social spider algorithm. The simplex method is used to estimate and update the
positions of the spiders. This stochastic variant strategy enhanced the population
diversity and improved the local search ability of the traditional algorithm. Han et al.
[10] hybridized the birds flock and gravitational search algorithm (BFGSA) to develop
an efficient algorithm for partitional clustering that uses neighbourhood strategies to
explore a broader range of search space. This hybrid model managed to overcome the
local optima, handling of multidimensional data, and premature convergence problems.
Ganguly [6] proposed a neighbour heuristic-based algorithm for cluster analysis, in
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which a function was introduced to avoid the direct distance vectors computation and
get the topmost similar vectors in this work. Singh et al. [35] introduced an artificial
chemical reaction-based algorithm for partitional clustering problems, whereby
neighbourhood and position-based operators were taught to overcome the deficiencies
of traditional chemical reaction algorithms resulting in a more efficient clustering
algorithm. Singh and Kumar [33] hybridized the ACRO algorithm with genetic oper-
ators, whereas Singh and Kumar [34] introduced a neighborhood search based on the
CSO algorithm and applied this to solve clustering problems. Motwani et al. [25]
developed three methods to generate the initial centroids for initial cluster selection
and concluded that the farthest distributed centroid clustering algorithm produces
quality clusters.

Santana-Velasquez et al. [30] focused on applying Machine Learning (ML) techniques
as an alternative to DRG’s traditional classification methods. The primary goal is to
determine if ML techniques can categorize patients according to the DRGs criteria using
information available during discharge. This data served as the foundation for subsequent
research on the prediction of DRGs in the early phases of patients’ hospitalization
episodes. Stephan et al. [36] applied the HAW technique in an ANN model concurrently
with feature selection (FS) and parameter optimization algorithms. Backpropagation
learning was used to develop HAW in this study, which comprises robust
backpropagation (HAW-RP), Levenberg—Marquart (HAW-LM), and momentum-based
gradient descent (HAW-GD) methods. The accuracy, complexity, and computation time
of this hybrid model was studied using several breast cancer datasets. Goyal et al. [8]
applied various optimization algorithms such as the particle swarm optimization (PSO),
cat swarm optimization (CSO), BAT, cuckoo search algorithm (CSA) optimization
algorithm, and whale optimization algorithm (WOA) for load balancing, energy efficien-
cy, and better resource scheduling to create an efficient cloud environment. The study
found that the WOA beat all the other algorithms in response time, energy consumption,
execution time, and throughput in the scenario of seven servers and eight server
configurations.

Stephan et al. [37] proposed a novel hybrid Artificial Bee Colony (hybrid ABC)
optimization algorithm where the strong explorative capabilities of the chemotaxis phase
of the bacterial foraging optimization were integrated with a spiral model-based exploit-
ative phase of the ABC algorithm. This enabled the proposed hybrid ABC algorithm to
overcome the demerits of poor exploration procedures in the standard ABC algorithm
and outperform the corresponding standalone ABC algorithm. Rahnema and
Gharehchopogh [29] proposed an improved version of the ABC algorithm based on
the swarm intelligence characteristic of whales and found that random memory and elite
memory enhanced the convergence speed of the improved algorithm. Ghany et al. [7]
combined the WOA with the tabu search method. The tabu search enabled the WOA to
store multiple best solutions and utilize them to explore the solution space more
effectively. Purushothaman et al. [28] combined the Gray wolf optimization and grass-
hopper algorithms for clustering. This hybridization improved reliability and reduced
computational time. Ahmadi et al. [1] modified the Gray wolf optimization algorithm by
introducing a balanced approach to exploration and exploitation and centers around the
best solution, and showed that the proposed algorithm produced state-of-the-art results
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with a higher accuracy rate. Kumar and Kaur [17] introduced three new variants of the
bat algorithm that managed to resolve problems related to initial cluster selection,
convergence rate, and local optima with the help of enhanced cooperative evolution,
elitist, and neighbourhood search strategies. These enhancements resulted in a robust
partitional clustering algorithm.

All these innovations to the existing bio-inspired algorithms were proven to have
improved efficiency, faster convergence rate, shorter computation time, and higher
accuracy when compared to the corresponding standard, standalone bio-inspired
algorithms.

3 Methodology

This section gives the background description of the algorithms and methods that have been
implemented in this work. The Enhanced Whale Optimization Algorithm (EWOA) has
been successfully utilized in the field of clustering to produce optimal cluster centres. The
dataset is first put into memory, and the fundamental parameters are then configured.
Following that, other sequential processes, such as sampling or cluster centre selection,
goal function computation, assignment of data items to appropriate clusters, and updating
of points are performed.

3.1 Whale optimization algorithm

The whale optimization algorithm is a nature-inspired algorithm that simulated the
foraging behaviour of humpback whales [24]. Although it was initially designed to solve
numerical problems, it was soon applied to several other domains such as clustering, due
to its self-explorative nature and ability to achieve convergence at a faster rate. The
formulated mathematical model stimulated the prey identification and hunting strategies
of humpback whales. The prey finding and encircling processes are modelled using Egs.
(2) and (3):

—

D=|CaZ (-Z(1) 2)
Z(+1) = Z ()-As.D 3)

— — — g .
where A,, =24d.r—a, C., =2r. The terms Z and Z" denote the current position

vector and global best position vector, respectively, C—L; and A—L; are coefficient
vectors, » is a rand (0, 1) function, @ is linearly decreased from 2 to 0 over the
iterations.

The bubble-net attacking process is a combination of shrinking encircling, and spiral
position update methods. In shrinking encircling, the coefficient vectors get varied to simulate
the humpback whale behaviour. At the same time, in the spiral position update method, the
formulated spiral equation is trailed to find the helix-shaped movement of whales as denoted
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by Egs. (4) and (5). The humpback whales perform shrinking encircling or spiral movements
that can be calculated using Eq. (6).

D =7 070 @)

7(1 +1)= F.ebl.cos(Zﬂl) + 7(0 (35)

Zit1) = { Z*_/()t)fAcv.D _ <03 ©)
D .&".cos(2nl) + Z" (1),ifp>0.5

Here, B is a distance vector, b is a constant vector, and / is a rand [—1,1], and p is a
rand (0,1) function. The humpback whale search preys randomly in search space. The
movements of the whale results in the change in vector location as denoted by Eqs. (7)
and (8).

— —_—— —

D = Ccv-Zrand_Z (7)
— —_— — —
Z(t+1) = Zygni—Acy . D (8)

The term 7(t + 1) represents a new position vector, while the term Z,,,,; denotes a randomly
chosen vector.

3.2 Water wave optimization algorithm (WWOA)

Recently, a water wave theory-based optimization algorithm was introduced for solving global
optimization problems (Zheng [42]). This algorithm inherits the propagation, refraction, and
breaking phenomena of water waves for searching and optimization. In water wave propaga-
tion operations, the new water waves are generated using Eq. (9) while the wavelength, X is
calculated using Eq. (10).

Z(t+1) = Z +rand(=1,1) x A x Ly 9)
(f (x)~finin+<)
)\ = )\ X (O Umax—fminT<) (10)
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Here, L, is the length of the search space (1 < d < n), A is the wavelength, finin and finax are
the minimum and maximum fitness values, respectively, « is the wavelength dropping factor,
and ¢ is a fixed constraint.

3.3 Tabu search

Tabu search is an elite list-based global optimization technique. The starting solutions are
stored in the list and iteratively compared with the upcoming solutions. If an improved solution
is obtained, the previous/starting solution is updated/ replaced with a better solution. The
implementation of tabu search avoids re-entering previously explored regions and uses a single
point for exploration [42].

3.4 Neighbourhood strategy

The neighbourhood strategy is used to enhance the searchability of the algorithm and increases
the probability of finding a new solution. This primary centers around the neighbouring
solutions and uses them to generate new solutions [30].

4 Proposed work: An enhanced whale optimization algorithm (EWOA)
for partitional clustering

This section detailed the EWOA for solving partitional clustering problems. In this study,
two improvements are proposed: (i) The propagation method is incorporated into the whale
optimization algorithm; (ii) An integrated strategy is proposed to handle the local optima
situation. A detailed description is given below.

4.1 Improvements in search space mechanism

The whale optimization algorithm is incorporated with an additional exploration mech-
anism to enhance searchability. The random prey search operation of the whale opti-
mization algorithm is replaced with the propagation method of the water wave
optimization algorithm given in Eqgs. (9) and (10). The explorative search mechanism
of the water wave algorithm is utilized to generate the new location vector and diversify
the solution.

4.2 Integration of tabu and neighbourhood search strategies

In the second improvement, an integrated strategy based on tabu, and neighbourhood search is
designed and implemented to solve local optima and nullify premature convergence problems.
Here, the tabu list is extended to store N number of global best Zy ghes; positions in it. These
7, gvest best positions are used as neighbouring points in the neighbourhood search strategy.
Afterward, to generate a single point, the harmonic means of Zy, gheq point is calculated. To
understand in a better way, assume that, Z,, gpesi@re a tabus list that stores (N) number of
global best data points (Zy, gpest)- These data points are used as neighbouring points Z; ycigh =
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Fig. 1 Flow chart of EWOA

{Z, gbestr Lo, gbests -++--- 7, gbest)» Where N = 1, 2, ..., 9, and the harmonic mean of these
neighbouring data points is calculated, Z,,.,=Harmonic mean of(Zy;, yion) is used to generate a
new data point.

4.3 Proposed EWOA model in solving clustering problems

The enhanced whale optimization algorithm is successfully implemented in the clustering field
to achieve the optimal cluster centres. Initially, the dataset is loaded in memory, and basic
parameters are initialized. Afterward, the different consecutive operations, sampling or cluster
centre selection, objective function computation, assignments of data objects to respective
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clusters, updates, and others are followed. The pseudo-code of the proposed algorithm is
detailed in Algorithm 1 and graphically presented in Fig. 1.

Algorithm 1: The pseudo-code of EWOA for solving clustering problems

Input: Dataset and predefined parameters.

Output: Optimized cluster centres.

1: Select the dataset, initialize the basic parameters like the number of clusters K; € (i = 1,2,...,n),
iterations, and others.
2: Select the (K;) initial centroids or population (K samples) from a dataset (Random fashion,).
3: Compute the objective function Eq. (1).
4: Allocate data objects to clusters aggreging the minimum objective function values and compute their
fitness Eq. (11).
K —
Fitness ()?) = ZKSSE#CL (11)
LYK SSE(ZC))
5: Generate new vector solution
If(p<0.5)
If1A| < 1 then
Update the search vector using Eq. (3).
Else if |Al = 1 then
Update the search vector using Eq. (9).
End if
Else if (p 20.5)
Update the search vector using Eq. (5).
6: Check for local optima
If (local optima)
Apply integrated strategy
Else continue
7: Update the search vector.
8: Check the induced abort condition, i.e., iteration number, if fulfilled, abort execution, else carry-on steps
3-8.
9: Optimal solution

Here SSE is the “sum of squared intra-cluster Euclidean distance”; C; is the j" cluster centre.
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4.4 Toy example

The working of EWOA algorithm in the clustering field is exemplified using an artificial
dataset. The artificial dataset (9,3,4) contains 9 data instances, 3 classes, and 4 attributes.

Step 1. Load dataset and specify number of clusters (K = 3), total population = 9, no of
iterations = 10.

5.1 35 1.4 0.2
4.9 3 1.4 0.2
4.7 32 1.3 0.2
7 32 4.7 1.4
6.4 32 4.5 1.5
6.9 3.1 4.9 1.5
6.3 33 6 2.5
5.8 2.7 5.1 1.9
7.1 3 5.9 2.1

Step 2. Randomly selected initial cluster centres.

4.7000 3.2000 1.3000 0.2000
6.9000 3.1000 4.9000 1.5000
5.8000 2.7000 5.1000 1.9000

Step 3. Evaluate the objective function.

0.5099 4.1641 4.2083
0.3000 4.2367 4.1809
0.0000 4.4159 4.3347
4.2767 0.2646 1.4491
3.8497 0.6481 1.063
4.4159 0.000 1.253
5.4727 1.6155 1.3342
4.3347 1.253 0.000
5.529 1.1874 1.5684

Step 4. Assign data objects to clusters according to minimum objective function values.

0.5099 4.1641 42083
0.3000 4.1809 42367
0.0000 4.3347 4.4159
0.2646 1.4491 4.2767
0.6481 1.063 3.8497
0.0000 1.253 4.4159
1.3342 1.6155 5.4727
0.0000 1.253 4.3347
1.1874 1.5684 5.529
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The index values of the clusters are:

1 2 3
1 3 2
1 3 2
2 3 1
2 3 1
2 3 1
3 2 1
3 2 1
2 3 1
Step 5. Generated cluster centres in 9th iteration.

5.1000 3.5000 1.4000 0.2000
6.3000 3.3000 6.0000 2.5000
7.1000 3.0000 5.9000 2.1000
Step 6. Check for local optima.

Step 7. Update the candidate solution.

Step 8. Check the ‘Stop’ criteria. If requirements are met, ‘Stop’, else repeat steps 3—8.
Step 9.  Optimal solution.

5.1000 3.5000 1.4000 0.2000
6.3000 3.3000 6.0000 2.5000
7.1000 3.0000 5.9000 2.1000

5 Experimental results and analysis

This section provides a detailed description of simulation results and parameter settings for the
EWOA. The simulation is performed in the MATLAB 2016 environment, configured on a
Windows 10 OS, processor intel i3, 8 GB RAM equipped machine. The performance of the
proposed EWOA is measured on eight datasets, and the characteristics are detailed in Table 1.
The results are compared with seven clustering algorithms, namely the PSO, ACO, CSO, GA,
ACRO, WOA, and K-means clustering algorithms. The user-defined parameters setting of

Table 1 Description of datasets

Datasets [Description] D (Dimension/ N (Instances) K(Centroids/
attributes) Classes)

Iris [Fisher’s iris data] 4 150 3

Cancer [Breast cancer data] 9 683 2

CMC [Contraceptive method choice data] 9 1473 3

Wine [Wine data] 13 178 3

Glass [Glass identification data] 9 214 6

Thyroid [Thyroid disease data] 5 215 3

LR [Letter-Recognition data] 16 20,000 26

ISOLET [Isolated letter speech recognition data] 617 7797 26
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EWOA are defined as population = K X d, number of clusters or groups =K, A = [-1, 1],
random function (0,1) and length of search space (1 < d < n), iterations = 200. The

algorithms run thirty times individually, and the results are evaluated as an average case of
performance parameters (intra-cluster distance and f-measure).

5.1 Results and discussion

This subsection presents a comparative analysis and convergence behaviour of EWOA
and other clustering algorithms. Table 2 presents the performance comparison of K-
means, GA, PSO, ACO, CSO, ACRO, WOA, and EWOA using average intra-cluster
distance and f-measure parameters. From simulation outcomes, it is observed that the
EWOA obtain minimum intra-cluster distance values except for the CMC datasets.
Further, the f-measure is also computed to assess the classification of data objects to
corresponding clusters. The EWOA attained a healthy f-measure rate except for CMC
and LR datasets. For the CMC dataset, ACRO algorithm, and LR dataset, GA has
superior results.

The convergence behavior of AWOA, WOA, ACRO, CSO, ACO, PSO, GA, and K-means
clustering algorithms are depicted in Fig. 2a-h. The x-axis shows the number of iterations, and
the y-axis shows the intra-cluster distance. From graphs, it is revealed that EWOA converges
on a minor level except for the CMC dataset. Although in most aspects, the EWOA provides a
better convergence rate.

Except for the CMC and LR datasets, the EWOA achieved a better f-measure rate. GA
outperforms the CMC dataset, the ACRO method, and the LR dataset.

Figure 2a-h shows the convergence behavior of EWOA and other clustering algorithms.
The convergence on ISOLET dataset is described with the Number of Iterations v/s Intra
Cluster Distance, compared with the EWOA, WOA, ACRO, CSO, ACO, PSO, GA & K-
means.

5.2 Statistical analysis

The Friedman statistical test is carried out to prove the significance of the results and verify the
feasibility of the newly proposed algorithm. Here two hypotheses (null hypothesis (H;) and
alternative hypothesis (H;)) are projected; the H, expresses that the algorithms have similar
performance; the H; expressese that algorithms have dissimilar performance. Table 3 shows
the statistical analysis using the intra-cluster distance parameter. The test shows that the critical
value is 14.067144, and the p value is 7.12E-07 at a significance level from 0.5. These values
are consistent with the test which showed that the null hypothesis (Hy) is rejected, hence
proving that the algorithms have dissimilar performances. The EWOA was also found to have
significantly distinct performances compared to the other algorithms that are compared in this
study.

Table 4 shows the statistical analysis using the f-measure parameter. The EWOA gets the
first rank except for CMC and LR datasets. However, for cancer, wine and balance, it is

Fig. 2 a Convergence on Iris dataset b Convergence on Cancer Dataset ¢ Convergence on CMC dataset
d Convergence on Wine Dataset e Convergence on Glass Dataset f Convergence on Thyroid Dataset
g Convergence on LR Dataset h Convergence on ISOLET Dataset

@ Springer
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Multimedia Tools and Applications

Table 3 Statistical analysis using intra-cluster distance

Datasets Clustering Algorithms

K-means GA PSO ACO CSO ACRO WOA EWOA
Iris 7 8 6 5 4 2 3 1
Cancer 7 8 4 6 5 3 2 1
CMC 8 4 7 6 5 3 1 2
Wine 8 7 5 6 4 3 2 1
Glass 3 8 6 7 4 5 2 1
Thyroid 8 3 4 7 6 5 2 1
LR 8 7 4 5 6 3 2 1
ISOLET 4 8 6 7 5 2 3 1
Sum 53 53 42 49 39 26 17 9
Rank 6.63 6.63 5.25 6.13 4.88 3.25 2.13 1.13
NSs: 64 NPs: 08 NAs: 8
SSRS: 12350 CF: 1296 FDS: 41.2916
DF: 7 p value: 7.12E-07 CV: 14.067144

NSs Number of observations, NPs Number of problems, NAs Number of algorithms, SSRS Sum of squares of
ranks sums, CF Correction factor, F7S Friedman test statistic, DF' Degree of freedom and CV Critical value.

approximately equal to the ACRO algorithm. The critical value is 14.0671 that shows the
significant difference among algorithms.

Table 4 shows the statistical analysis using the f-measure parameter. The EWOA gets the
first rank for all the datasets except for the CMC and LR datasets. However, for the cancer,
wine and balance datasets, the results obtained from the EWOA was found to be approxi-
mately equal to the results from the ACRO algorithm. The critical value of 14.0671 indicates

that there is a significant difference in the performance of the algorithms.

Table 4 Statistical analysis using F-measure

Datasets Clustering Algorithms

K-means GA PSO ACO CSO ACRO WOA EWOA
Iris 4.5 8 6 7 4.5 3
Cancer 3 8 6 5 4 1.5 7 1.5
CMC 3 8 6 7 5 1 3
Wine 6 8 7 5 3.5 1.5 3.5 1.5
Glass 3 8 6 7 5 2 4 1
Thyroid 8 6 7 4 5 3 2 1
LR 2 1 8 6 7 4 5 3
ISOLET 5 6 4 8 7 2 3 1
Sum 34.5 53 50 49 41 17 30.5 13
Rank 431 6.63 6.25 6.13 5.13 2.13 3.81 1.63
NSs: 64 NPs: 08 NAs: 8
SSRS: 11969.5 CF: 1296 FTS: 33.7665

DF: 7

p value: 1.90E-05

CV: 14.067144
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6 Conclusion and future work

In this study, an improvement to the original WOA called the Enhanced Whale Optimiza-
tion Algorithm (EWOA) has been developed for solving clustering problems. This im-
proved algorithm has proven to be able to overcome the problems that are inherent in the
original WOA, namely the slower convergence rate due to the convergence being concen-
tric around the search space mechanism and the local optima situation. To overcome the
problems that are inherent in the WOA, the EWOA is enhanced with two additional
operational procedures to accelerate the convergence rate and overcome the local optima
situation. Minimum intra-cluster distance and an accelerated convergence rate was
achieved through the implementation of position update equations from the water wave
optimization algorithm that were incorporated into the algorithm to improve the search
space, whereas the local optima situation was overcome by implementing the tabu and
neighbourhood search strategies into the algorithm. The efficiency of the proposed EWOA
was measured using a simulation-based experimental study that was conducted on eight
benchmark datasets, namely the Iris, Cancer, CMC, Wine, Glass, Thyroid, LR and ISOLET
datasets. The results obtained were then compared to the results obtained via seven existing
clustering algorithms/techniques, namely the PSO, ACO, CSO, GA, ACRO, WOA, and K-
means algorithms. The performance of each algorithm was compared and analyzed using
the average intra-cluster distance and f-measure parameters. The results obtained clearly
showed the applicability and feasibility of the enhancements that were made to the EWOA
and the superiority of the proposed EWOA model in solving clustering problems compared
to the existing models/methods. The future scope of this work involves the application of
the proposed EWOA model in solving problems related to vehicular networks for cluster
head formation and load balancing.
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