
OPTIMIZATION

Adaptive opposition slime mould algorithm

Manoj Kumar Naik1 • Rutuparna Panda2 • Ajith Abraham3

Accepted: 9 August 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Recently, the slime mould algorithm (SMA) has become popular in function optimization, because it effectively uses

exploration and exploitation to reach an optimal solution or near-optimal solution. However, the SMA uses two random

search agents from the whole population to decide the future displacement and direction from the best search agents, which

limits its exploitation and exploration. To solve this problem, we investigate an adaptive approach to decide whether

opposition-based learning (OBL) will be used or not. Sometimes, the OBL is used to further increase the exploration. In

addition, it maximizes the exploitation by replacing one random search agent with the best one in the position updating.

The suggested technique is called an adaptive opposition slime mould algorithm (AOSMA). The qualitative and quanti-

tative analysis of AOSMA is reported using 29 test functions that consisting of 23 classical test functions and 6 recently

used composition functions from the IEEE CEC 2014 test suite. The results are compared with state-of-the-art optimization

methods. Results presented in this paper show that AOSMA’s performance is better than other optimization algorithms.

The AOSMA is evaluated using Wilcoxon’s rank-sum test. It also ranked one in Friedman’s mean rank test. The proposed

AOSMA algorithm would be useful for function optimization to solve real-world engineering problems.

Keywords Soft computing � Slime mould algorithm � Function optimization � Engineering applications

1 Introduction

In the real-world, the resources are limited, and the optimiza-

tion of the available resources is much desirable. So, opti-

mization is a means to obtain the potential solution for a

specific problem. Broadly, based on the mathematical foun-

dation, the optimization problems are classified into two cate-

gories: deterministic and stochastic. The deterministic

optimization algorithm requires the knowledge of gradient

information to obtain the optimal solution, some well-known

methods are linear and nonlinear programming. These methods

are good for linear search spaces, however, not effective for

nonlinear search spaces (Faramarzi and Afshar 2014).

Stochastic optimization does not require gradient information;

however, they generate and use random variables to obtain the

optimal solution. The metaheuristic optimization algorithm is

implemented based on a stochastic operator with an advantage

of simplicity, flexibility, gradient-free, and problem indepen-

dent (Mirjalili et al. 2014). The metaheuristic algorithms are

gradient-free and problem independent, the problem can be

considered as a black box with identified input and output

variables. The metaheuristic algorithm also does not require an

initial guess to a solution space, which that received major

attention in recent years (Naik et al. 2020).

Based on the number of the solution obtained by the meta-

heuristic algorithm, they are classified into two types (Talbi

2009): a single solution-based and population-based. The single

solution-based optimization generates only one solution

throughout the optimization stages. On the other hand, popula-

tion-based optimization generates a set of solutions at every

generation of the optimization stages and is mostly inspired by

& Rutuparna Panda

r_ppanda@yahoo.co.in

Manoj Kumar Naik

naik.manoj.kumar@gmail.com

Ajith Abraham

ajith.abraham@ieee.org

1 Faculty of Engineering and Technology, Siksha O

Anusandhan, Bhubaneswar, Odisha 751030, India

2 Department of Electronics and Telecommunication

Engineering, Veer Surendra Sai University of Technology,

Burla, Odisha 768018, India

3 Machine Intelligence Research Labs, Scientific Network for

Innovation and Research Excellence, Auburn,

WA 98071-2259, USA

123

Soft Computing
https://doi.org/10.1007/s00500-021-06140-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-8676-0144
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06140-2&domain=pdf
https://doi.org/10.1007/s00500-021-06140-2

natural phenomena. The well-known example for single solu-

tion-based optimization is simulated annealing (SA) (Kirkpatrick

et al. 1983), and the population-based optimization is a genetic

algorithm (GA) (Holland 1975).

On the other way, based on the source of inspiration, the

metaheuristic algorithms are mostly classified into four cate-

gories: evolution algorithms (EAs), swarm intelligence (SI),

physics-based, and human-based. The EAs are inspired by

biological evolution, such as crossover, mutation, and selec-

tion. The most popular EAs is a genetic algorithm (GA)

(Holland 1975), which is based on the Darwinian theory of

evolution. The GA used the crossover to generate the off-

spring from parents that help to explore the search space.

After that, the next generation of parents is evolved by

selection. The other popular EAs is differential evolution

(DE) (Feoktistov 2006). The SI algorithms are inspired by the

intelligent social behavior of organisms living in swarms,

herds, schools, or flocks. The most widely used SI algorithms

are particle swarm optimization (PSO) (Kennedy and Eber-

hart 1995), which simulate the bird flocking behaviors with

each bird is considered as a candidate solution. Each bird

updates its path based on the best one to reach optimal

solutions. Some other popular SI algorithms are Cuckoo

search (CS) (Yang 2014), ant colony optimization (ACO)

(Dorigo and Stützle 2004), firefly algorithm (FA) (Yang

2014), and artificial bee colony (ABC) (Karaboga and Bas-

turk 2008). Physics-based algorithms are inspired by physical

laws in nature. The well-known examples of a physics-based

algorithm are simulated annealing (SA) (Kirkpatrick et al.

1983) and gravitational search algorithm (GSA) (Rashedi

et al. 2009). The SA uses the thermodynamic law of defor-

mation of size due to heating and cooling, whereas GSA uses

Newton’s gravitational law to obtain the optimal position

based on mass, force, and distance between them. The

human-based algorithm is based on human interactions and

behavior. Some most prominent algorithms in these cate-

gories are teaching–learning-based-optimization (TLBO)

(Rao et al. 2012) which is based on impact of teachers on

learners and tabu search (TS) (Glover 1989, 1990).

Apart from the above presented well-known algorithms, the

researchers come up with many more metaheuristic algorithms

inspired by the nature to combat the problem in function

optimization and engineering problem (Naik et al. 2020). Some

of the recent developments of population-based metaheuristic

algorithm that are quite good on function optimization include

a gray wolf optimizer (GWO) (Mirjalili et al. 2014), whale

optimization algorithm (WOA), moth search algorithm (MSA)

(Wang 2018), monarch butterfly optimization (MBO) (Wang

et al. 2019), squirrel search algorithm (SSA) (Jain et al. 2019),

Harris hawks optimization (HHO) (Heidari et al. 2019), sailfish

optimizer (SFO) (Shadravan et al. 2019), equilibrium optimizer

(EO) (Faramarzi et al. 2020), slime mould algorithm (SMA)

(Li et al. 2020), manta ray foraging optimization (MRFO)

(Zhao et al. 2020), hunger games search (HGS) (Yang et al.

2021), RUNge Kutta optimizer (RUN) (Ahmadianfar et al.

2021), and Colony Predation Algorithm (CPA) (Tu et al.

2021). The GWO mimics the hunting mechanism such as

searching, encircling, and attacking the prey by gray wolves

(Canis lupus) in a leadership hierarchy. The WOA is inspired

by the social and hunting behavior like searching, encircling,

and bubble-net attacking of humpback whales (Megaptera

novaeangliae). The MSA is inspired by the phototaxis move-

ment of a family of moths which belong to order Lepidoptera

that follows Lévy flights. The MBO is inspired by the migra-

tion behavior of monarch butterflies between two lands (USA

and Maxico). The SSA stimulates the foraging behavior of

southern flying squirrel (Glaucomys Volans) with effective

locomotion known as gliding. The HHO has inspired on

Harris’s hawk (Parabuteo unicinctus) cooperative behavior of

chasing the prey based on surprise pounce or seven kills

strategy. The SFO is a model of the behavior of sailfish (Is-

tiophorus platyerus) on group hunting strategy and attacking

pray sardine (Sardinella aurita). The EO is inspired by a

physics principle, controlled mass balance model to estimate

the equilibrium state. The SMA is inspired by how the plas-

modial slime mould (Physarum ploycephalum) establishes an

optimal path to reach the solution. The MRFO is inspired on

intelligent foraging strategy of manta rays such as chain,

cyclone, and somersault. The HGS is designed based on the

fitness-wise search method according to the hunger-driven

activities shown by animals. The RUN is a metaphor-free

optimizer based on slope variation computed by Runge Kutta

method widely used in the mathematics. The CPA is based on

the community prediction of animal with the strategy such as

dispersing prey, encircling prey, assisting the successful pre-

dictor, and looking for another target.

As the original optimization algorithms are designed based

on basic nature-inspired principles, they possess flaws and

constraints. Furthermore, as per the ‘‘no free lunch’’ (NFL)

theorem (Wolpert and Macready 1997), one algorithm may not

work for different classes of problems. So, there is always a

chance of improvement in the performance of the algorithm.

This provoked the researchers to enhance the original opti-

mization algorithms with different initial design techniques

(Wunnava et al. 2020b), remodeling/modifying the search

patterns (Qian et al. 2020; Wunnava et al. 2020a, c; Guha et al.

2020) or hybridizing the optimization algorithms (Zhu et al.

2020). In this context, opposition-based learning (OBL) (Tiz-

hoosh 2005) is a method used to enrich the exploration of any

optimization algorithm, because it utilizes the information of

opposite relationships among entities to select the best one. The

OBL was successfully applied in various optimization algo-

rithms, artificial neural networks, fuzzy systems, and rein-

forcement learning to improve performance (Mahdavi et al.

2018; Dhargupta et al. 2020). The SMA (Li et al. 2020) is quite

an interesting swarm-based optimization algorithm proposed in

M. K. Naik et al.

123

2020 with a good performance and convergence. The SMA has

been further improved in performance by many researchers and

applied in various fields. Some of the prominent works are:

CNMSMA (Liu et al. 2021) used the chaotic map with Nelder-

Mead simplex strategy to enhance the performance of SMA and

used to estimate the parameters of photovoltaic cells; DASMA

(Zhao et al. 2021) used the diffusion and association strategy in

SMA to enhance the performance and applied in medical

multilevel image thresholding to help doctors; WQSMA (Yu

et al. 2021) is proposed to boost the original SMA by adding the

concept of water-cycle from water-cycle algorithm (WCA) and

quantum rotation gate mechanism.

In the same way, the authors of this article are primarily

inspired by the performance of SMA (Li et al. 2020) in function

optimization. It is noteworthy to mention here that the SMA

effectively uses the exploration and exploitation phases to reach

an optimal solution or near-optimal solution. However, the SMA

uses two random search agents from the whole population to

decide the future displacement and direction from the best search

agents. This feature of the SMA limits its exploitation and

exploration capabilities. This has motivated us to propose a new

algorithm for function optimization. In this work, we suggest an

adaptive approach to decide whether to use opposition-based

learning (OBL) or not. This idea is used to further enrich the

exploration capability. In addition, it ensures the maximization of

the exploitation phase by replacingone randomsearch agentwith

the best one in the position updating. The proposed method is

coined as an adaptive opposition slime mould algorithm

(AOSMA). The qualitative and quantitative analysis of AOSMA

is reported using 29 test functions, which are composed of 23

classical test functions (Yao et al. 1999; Naik and Panda 2016)

and 6 recent composition functions from the IEEE CEC 2014 test

suite (Liang et al. 2013). The results are compared with some

recently developed (state-of-the-art) optimization algorithms

such as SMA, MRFO, EO, SFO, HHO, SSA, and WOA, which

shows AOSMA’s superiority among other optimization algo-

rithms. The AOSMA is validated using Wilcoxon’s rank-sum

test. Further, it is ranked one in Friedman’s mean rank test.

Exemplar solutions are presented to attract the readers.

The paper is organized as follows. Section 1 is committed

to a brief introduction. The proposed work of the develop-

ment of AOSMA is discussed in Sect. 2. The qualitative and

quantitative result analysis of AOSMA with a comparison

with the state-of-the-art algorithms are reported in Sect. 3. In

Sect. 4, a concluding remark is drawn.

2 Proposed work

The development of the adaptive opposition slime mould

algorithm (AOSMA) is based on remodeling the

approaching behavior of slime mould as discussed in (Li

et al. 2020) with an adaptive decision for opposition-based

learning. The SMA is a stochastic optimizer based on the

oscillation mode of plasmodial slime mould (Physarum

ploycephalum). The slime mould uses the oscillation mode

along with positive–negative feedback to establish the

optimal path to connect food.

2.1 Mathematical formulation of AOSMA

Let us assume N slime moulds are present in the search

space with upper boundary (UB) and lower boundary (LB).

Then, i th slime mould position in d-dimensions can be

expressed as Xi ¼ x1
i ; x

2
i ; . . .; x

d
i

� �
; 8i 2 1;N½ �, and fitness

(odor) of the ith slime is represented as f Xið Þ; 8i ¼ 1;N½ �.
So, the position and fitness of N slime mould at the current

time (iteration) t is expressed as:

X tð Þ ¼

x1
1 x2

1 � � � xd1
x1

2 x2
2 � � � xd2

..

. ..
. ..

. ..
.

x1
N x2

N � � � xdN

2

6664

3

7775
¼

X1

X2

..

.

XN

2

6664

3

7775
ð1Þ

f Xð Þ ¼ f X1ð Þ; f X2ð Þ; . . .; f XNð Þ½ � ð2Þ

The position of slime mould for the next iteration (t þ 1)

in SMA (Li et al. 2020) is updated using Eq. (3).

Xi t þ 1ð Þ

¼
XLB tð Þ þ Vb W � XA tð Þ � XB tð Þð Þ r1 � d and r2\pi

Vc � Xi tð Þ r1 � d and r2 � pi

rand � UB � LBð Þ þ LB r1\d

8
><

>:
;

8i 2 1;N½ �
ð3Þ

The XLB represent the local best individual for the cur-

rent iteration, XA and XB are randomly pooled slime mould

from current populations, W as the weight factor, and Vb

and Vc as the random velocity. The r1 and r2 are random

numbers in the range of 0; 1½ �. The d is the chance of the

slime mould that initializes to a random search location

which is fixed at 0:03.

The pi is the threshold value of i th slime mould that

helps to choose the slime mould position using the best

individual or itself for the next iteration, which is evaluated

as:

pi ¼ tan h f Xið Þ � fGBj j; 8i 2 1;N½ � ð4Þ

where f Xið Þ is the fitness value of ith slime mould Xi, and

the global best fitness value fGB is evaluated using Eq. (5)

of the global best position XGB.

fGB ¼ f XGBð Þ ð5Þ

Then, the weight W for N slime mould in a current

iteration t is determined as:

Adaptive opposition slime mould algorithm

123

W SortIndf ið Þð Þ ¼
1 þ rand � log

fLB � f Xið Þ
fLB � fLW

þ 1

� �
1� i� N

2

1 � rand � log
fLB � f Xið Þ
fLB � fLW

þ 1

� �
N

2
\i�N

8
>>><

>>>:

ð6Þ

where rand is a random number in between 0; 1½ �, fLB as the

local best fitness and the local worst fitness value is fLW.

The fLB and fLW are determined from the fitness value f

given in Eq. (2). For a minimization problem, sort the fit-

ness value in ascending order as:

Sortf ; SortIndf½ � ¼ sort fð Þ ð7Þ

The local best fitness fLB and corresponding local best

individual XLB are extracted as:

fLB ¼ f Sortf 1ð Þð Þ ð8Þ
XLB ¼ X SortIndf 1ð Þð Þ ð9Þ

The local worst fitness fLW is extracted as:

fLW ¼ f Sortf Nð Þð Þ ð10Þ

The Vb and Vc are the random velocity chosen from the

continuous uniform distribution in the interval �b; b½ � and

�c; c½ �. The b and c for the iteration t are chosen as:

b ¼ arctan h � t

T

� �
þ 1

� �
ð11Þ

and

c ¼ 1 � t

T
ð12Þ

where the maximum iteration is T .

The SMA has shown promising exploration and

exploitation capability to solve the function optimization

and engineering design problem as discussed in (Li et al.

2020). However, there is a scope of improvements in the

search process of the optimal food path for slime mould as

described by Eq. (3). The next generation position updat-

ing rule of slime mould in SMA mainly depends on three

cases based on d and pi, which are:

Case 1 When r1 � d and r2\pi, the slime mould search

trajectory guided by the local best individual XLB

and two randomly pooled slime XA and XB from

search space of N slime mould with velocity Vb.

This step helps in balancing exploration and

exploitation.

Case 2 When r1 � d and r2 � pi, the slime mould tra-

jectory is guided by the position of itself with a

velocity Vc. This step helps in exploitation.

Case 3 When r1\d, the slime mould reinitializes again

in the search space, this helps in exploration.

Case 1 shows that XA and XB are two randomly pooled

slime mould, the chances of solutions we get are not guided

properly to explore and exploit. This limitation can be

overcome by replacing one randomly pooled slime mould

XA with the local best individual XLB. So, the ith

i ¼ 1; 2; . . .;Nð Þ slime mould position updating rule of

Eq. (3) is remodeled as Eq. (13).

Xni tð Þ ¼ XLB tð Þ þ Vb W � XLB tð Þ � XB tð Þð Þ; if r1 � d and r2\pi

ð13aÞ
Xni tð Þ ¼ Vc � Xi tð Þ; if r1 � d and r2 � pi ð13bÞ
Xni tð Þ ¼ rand � UB � LBð Þ þ LB; if r1\d ð13cÞ

As per Case 2, the slime mould exploits a nearby place,

so it may be following a path of lower fitness value than

before. To overcome this limitation, an adaptive decision

mechanism can be a better choice. Based on Case 3, the

SMA has a provision for dedicated exploration, however as

d is a small value, the exploration is limited. To overcome

this limitation, we need to supplement extra exploration to

SMA, which help it to overcome the local minima. As a

combined effort to overcome the limitations of Case 2 and

Case 3, we use an adaptive decision strategy for whether it

is needed to explore furthermore using OBL (Tizhoosh

2005).

2.1.1 Opposition-based learning

The OBL used an estimate Xoi in the search space which is

the exact opposite of the position Xni for each slime mould

i ¼ 1; 2; . . .;Nð Þ and compare it to update the position of

the next iterations. This step helps to avoid the chances of

being trapped in the local minima with improved conver-

gence. So, the Xoi for ith slime mould in j th dimension is

estimated as:

Xo j
i tð Þ ¼ min Xni tð Þð Þ þ max Xni tð Þð Þ � Xn j

i tð Þ ð14Þ

where i ¼ 1; 2; . . .;N and j ¼ 1; 2; . . .; d.

Let us represent Xsi is the ith slime mould position,

which is selected for minimization problem as:

Xsi tð Þ ¼
Xoi tð Þ if f Xoi tð Þð Þ\f Xni tð Þð Þ
Xni tð Þ if f Xoi tð Þð Þ� f Xni tð Þð Þ

�
ð15Þ

2.1.2 Adaptive decision strategy

When the slime mould is following a decedent nutrient

path, an adaptive decision is taken based on the current

fitness value f Xni tð Þð Þ and old fitness value f Xi tð Þð Þ. The

adaptive decision helps to supplement extra exploration

when needed via OBL. Finally, the position for the next

iteration is updated using the adaptive decision strategy of

AOSMA, which is modeled as:

M. K. Naik et al.

123

Xi t þ 1ð Þ ¼ Xni tð Þ if f Xni tð Þð Þ� f Xi tð Þð Þ
Xsi tð Þ if f Xni tð Þð Þ[f Xi tð Þð Þ

�
; 8i 2 1;N½ �

ð16Þ

Interestingly, the proposed AOSMA enhances the effi-

ciency of SMA with the help of an adaptive decision

strategy to whether OBL is needed during the search tra-

jectory. The pseudocode is presented in Sect. 2.2. A

flowchart is shown in Fig. 1.

2.2 Pseudocode of AOSMA

In the beginning, identity the number of slimes mould N to

be employed, objective function f of dimension d, search

space boundary UB and LB, and the maximum number of

iterations allowed as T . The pseudocode of the suggested

AOSMA is as follows:

Adaptive opposition slime mould algorithm

123

3 Results and discussion

This section presents the performance evaluation of the

proposed AOSMA on a set of 29 test functions that include

23 classical test functions (Yao et al. 1999; Wunnava et al.

2020b) and 6 composition test functions from the CEC-

2014 test suite (Liang et al. 2013). In this study, the search

history, trajectory, and average fitness history, convergence

curve, and boxplots are used as a qualitative metric, how-

ever, the average fitness value (‘Ave’) and standard devi-

ation (‘Std’) are used as a quantitative metric for

comparisons and validations. The proposed AOSMA is

also validated using a statistical method such as Friedman’s

mean rank and Wilcoxon rank-sum test.

Fig. 1 Flowchart of AOSMA

M. K. Naik et al.

123

3.1 Test functions, compared algorithms,
and experimental setup

Here, 29 test functions considered for the performance

evaluation comprise four core groups of benchmark land-

scapes: unimodal f1 � f7ð Þ, multimodal f8 � f13ð Þ, multi-

modal with fixed dimensions f14 � f23ð Þ, and composition

(CEC14 � F23 to CEC14 � F28). The unimodal test

functions have a unique global optimal solution, which

helps to understand the exploitation ability of the opti-

mization algorithm. The multimodal test functions have

more than one optimal solution with many local minima, so

these test functions help to understand the exploration’s

ability to obtain a globally optimal solution without trap-

ping in the local minima of the optimization algorithm. The

composition test functions having many locally optimal

solutions cover hybrid composite shifted, rotated, and

extended multimodal test functions. They mimic the ele-

vated complexity in the search domain. These composition

test functions help to understand the tradeoff ability

between exploitation and exploration to reach a globally

optimal solution by avoiding the local optima of the opti-

mization algorithm.

The performance of AOSMA on test functions is com-

pared with some recently developed optimization algo-

rithms such as the SMA (Li et al. 2020), MRFO (Zhao

et al. 2020), EO (Faramarzi et al. 2020), SFO (Shadravan

et al. 2019), HHO (Heidari et al. 2019), SSA (Jain et al.

2019), and WOA (Mirjalili and Lewis 2016). The experi-

mental parameter settings are shown in Table 1, which are

taken as reported in the original work. To maintain con-

sistency, the maximum function evaluation and population

size are taken as 15,000 and 30 for all optimization algo-

rithms The results are compared with the help of the

average fitness value (‘Ave’) and standard deviation among

the fitness value (‘Std’) using 51 independent runs of the

optimization algorithm.

3.2 Qualitative analysis of AOSMA

The qualitative analysis of AOSMA is presented in Fig. 2

which comprises search history, trajectory, and optimiza-

tion history metrics. This study shows how AOSMA

searches for the optimal solutions. The first column of

Fig. 2 shows a three-dimensional representation with a

contour line of randomly selected unimodal f1 and f7ð Þ,
multimodal f10ð Þ, multimodal with fixed dimensions f14ð Þ,
and composition (CEC14 � F27 and CEC14 � F28) test

functions.

The search history qualitative metric is shown in the

second column of Fig. 2, which comprise the first two

dimensions (x1 and x2) of N slime mould for the first

iteration to the last iteration. The positions are shown on

contour lines of the search space for a better thought. The

positions of slime mould are aggregate nearer to the opti-

mal solution space, which reflects that the AOSMA has

performed effective exploitation. However, some of the

positions of slime mould are also scattered around the

search space, which reflects that the AOSMA also per-

formed exploration. From the search history metric, it is

observed that the AOSMA has well balanced the

exploitation and exploration, that is needed for solving a

real-world optimization problem.

The trajectory qualitative metric is shown in the third

column of Fig. 2, which comprises the positions of the first

slime X ¼ x1; x2; . . .; xd
	

in the d-dimensional space

within the range UB;LB½ � of the search boundary. From

Fig. 2, it is evident that the positions of slime mould are

initialized in a random location that covers the whole

search boundary. However, as the generation (iteration)

increases, the positions try to converge to the optimal

solution value, which describes the exploitation efficiency.

Sometimes, the trajectory abruptly changes due to the

exploration. Finally, in a later stage (nearer to the maxi-

mum iteration), the trajectory gets flattened, which stabi-

lizes the searching and converges to global/local optimum

solutions. The AOSMA has a well-tuned performance on

exploitation and exploration.

The optimization history (convergence curve) metric is

shown in the fourth column of Fig. 2, which describes the

fitness value of the best slime mould during the iterations.

A decreasing trend in optimization history reveals the

effectiveness of the AOSMA.

3.3 AOSMA’s comparative performance on test
functions

In this section, the results of AOSMA are compared with

various optimization algorithms presented in Table 2 for

29 test functions such as unimodal f1 � f7ð Þ, multimodal

Table 1 Parameter settings

Algorithm Parameters

AOSMA / SMA d ¼ 0:03

MRFO S ¼ 2

EO a1 ¼ 2, a2 ¼ 1 and GP ¼ 0:5

SFO A ¼ 4 and � ¼ 0:001

HHO b ¼ 1:5

SSA Pdp ¼ 0:1, dg ¼ 0:8 and Gc ¼ 1:9

WOA a ¼ 0; 2½ �, b ¼ 1, and l ¼ �1; 1½ �

Adaptive opposition slime mould algorithm

123

M. K. Naik et al.

123

Ta
bl
e
2

R
es

u
lt

s
o

f
th

e
o

p
ti

m
iz

at
io

n
al

g
o

ri
th

m
an

d
F

ri
ed

m
an

m
ea

n
ra

n
k

F
u

n
ct

io
n

M
at

ri
c

A
O

S
M

A
S

M
A

M
R

F
O

E
O

S
F

O
H

H
O

S
S

A
W

O
A

U
n

im
o

d
al

te
st

fu
n

ct
io

n
(s

ca
la

b
le

)
f 1

A
v

e
0

1
.0

6
E

-3
0

2
2

.1
3

E
-2

4
6

3
.5

8
E

-4
0

6
.4

4
E

-1
6

5
.3

1
E

-5
9

1
.3

2
E

-1
3

1
.9

5
E

-1
8

S
td

0
0

0
1

.6
5

E
-3

9
1

.7
6

E
-1

5
2

.5
6

E
-5

8
7

.3
2

E
-1

3
3

.2
0

E
-1

8

f 2
A

v
e

0
2

.5
1

E
-1

4
0

2
.9

3
E

-1
2

6
5

.0
4

E
-2

4
1

.4
4

E
-0

7
1

.8
3

E
-3

1
4

.3
4

E
-0

7
3

.5
1

E
-1

1

S
td

0
1

.4
0

E
-1

3
9

6
.4

0
E

-1
2

6
7

.7
6

E
-2

4
1

.3
1

E
-0

7
4

.2
9

E
-3

1
2

.1
6

E
-0

6
3

.0
1

E
-1

1

f 3
A

v
e

0
0

2
.7

4
E

-2
2

3
3

.3
8

E
-0

9
5

.5
3

E
-1

3
7

.7
8

E
-4

9
4

.8
2

E
?

0
3

4
.3

0
E

-0
5

S
td

0
0

0
8

.5
6

E
-0

9
1

.1
8

E
-1

2
4

.3
3

E
-4

8
1

.8
7

E
?

0
4

1
.3

1
E

-0
4

f 4
A

v
e

0
6

.1
4

E
-1

5
9

3
.3

2
E

-1
2

2
1

.8
4

E
-1

0
8

.1
2

E
-0

9
1

.0
5

E
-3

1
1

.1
2

E
-0

6
8

.6
1

E
-0

5

S
td

0
3

.1
4

E
-1

5
8

1
.7

1
E

-1
2

1
3

.6
3

E
-1

0
9

.9
9

E
-0

9
2

.6
2

E
-3

1
6

.2
4

E
-0

6
9

.1
7

E
-0

5

f 5
A

v
e

6
.1

3
E
?

0
0

6
.3

8
E
?

0
0

2
.5

2
E
?

0
1

2
.5

3
E
?

0
1

5
.9

3
E

-0
2

1
.7

9
E

-0
2

1
.1
9
E
-0
6

2
.8

5
E
?

0
1

S
td

1
0

.0
9

4
5

7
1

1
.5

5
5

3
2

0
.3

8
4

5
3

3
0

2
6

0
.2

2
1

9
7

8
0

.1
0

1
7

7
6

2
1

7
0

.0
3

6
3

0
7

6
.4

6
E

-0
6

1
0

.6
1

5
3

1

f 6
A

v
e

8
.3

0
E

-0
5

0
.0

0
6

3
1

7
8

.8
0

E
-0

3
9

.4
1

E
-0

6
3

.0
0

2
0

4
4

0
7

7
0

.0
0

0
1

5
2

9
.0
7
E
-1
1

0
.8

1
3

6
7

9

S
td

5
.9

6
E

-0
5

0
.0

0
3

6
3

5
4

.5
5

E
-0

2
7

.2
5

E
-0

6
1

.4
5

8
7

2
8

4
2

7
0

.0
0

0
2

7
3

5
.0

5
E

-1
0

0
.4

0
5

3
0

7

f 7
A

v
e

8
.1
3
E
-0
5

0
.0

0
0

1
9

6
2

.3
1

E
-0

4
0

.0
0

1
3

1
2

0
.0

0
0

1
7

9
0

2
4

0
.0

0
0

2
1

2
0

.0
0

0
5

4
1

8
2

0
.0

0
5

9
4

5

S
td

7
.4

1
E

-0
5

0
.0

0
0

1
8

9
1

.9
2

E
-0

4
0

.0
0

0
6

8
3

0
.0

0
0

1
6

2
9

6
2

.8
6

E
-0

4
0

.0
0

1
6

3
7

8
4

0
.0

0
3

0
3

4

M
u

lt
im

o
d

al
te

st
fu

n
ct

io
n

(s
ca

la
b

le
)

f 8
A

v
e

2
1
2
,5
6
9
.4
8

2
1

2
,5

6
8

.9
5

2
2

.3
8

E
?

2
9

1
2

8
8

7
3

.1
2

2
3

7
1

,8
1

2
.7

4
2

1
2

,5
6

8
.8

9
2

2
.4

1
E
?

6
1

2
7

9
8

5
.5

8

S
td

4
.1

9
E

-0
3

4
.6

9
E

-0
1

In
f

7
.2

2
E
?

0
2

1
.7

3
E
?

0
6

1
.0

8
E
?

0
0

1
.0

5
E
?

6
2

5
.8

3
E
?

0
2

f 9
A

v
e

0
0

0
0

7
.5

2
E

-1
4

0
2

.6
0

E
?

0
1

1
.8

7
E
?

0
1

S
td

0
0

0
0

1
.6

8
E

-1
3

0
6

.8
8

E
?

0
1

1
.2

6
E
?

0
1

f 1
0

A
v

e
8
.8
8
E
-1
6

8
.8
8
E
-1
6

8
.8
8
E
-1
6

9
.3

7
E

-1
5

1
.1

3
E

-0
8

8
.8
8
E
-1
6

1
.2

9
E
?

0
0

6
.4

4
E

-1
0

S
td

0
0

0
2

.8
5

E
-1

5
1

.1
8

E
-0

8
0

5
.0

0
E
?

0
0

4
.1

6
E

-1
0

f 1
1

A
v

e
0

0
0

2
.3

9
E

-0
4

1
.3

3
E

-1
6

0
1

.1
3

E
-0

3
2

.8
7

E
-1

7

S
td

0
0

0
1

.3
3

E
-0

3
3

.6
5

E
-1

6
0

6
.2

9
E

-0
3

5
.7

1
E

-1
7

f 1
2

A
v

e
6

.1
8

E
-0

4
4

.3
7

E
-0

3
6

.4
5

E
-0

4
4

.4
7

E
-0

7
6

.0
8

E
-0

1
9

.3
6

E
-0

6
5
.0
2
E
-2
1

3
.4

2
E

-0
2

S
td

2
.2

2
E

-0
3

7
.7

2
E

-0
3

1
.9

4
E

-0
3

3
.0

1
E

-0
7

2
.1

9
E

-0
1

1
.6

9
E

-0
5

2
.6

7
E

-2
0

1
.8

0
E

-0
2

f 1
3

A
v

e
2

.2
8

E
-0

3
4

.6
7

E
-0

3
2

.4
3

E
?

0
0

3
.7

7
E

-0
2

8
.1

3
E

-0
3

8
.5

7
E

-0
5

3
.4
6
E
-0
8

8
.0

1
E

-0
1

S
td

5
.3

2
E

-0
3

5
.3

0
E

-0
3

1
.0

2
E
?

0
0

6
.1

7
E

-0
2

1
.6

4
E

-0
2

8
.7

4
E

-0
5

1
.9

3
E

-0
7

3
.0

3
E

-0
1

Adaptive opposition slime mould algorithm

123

Ta
bl
e
2

(c
o

n
ti

n
u

ed
)

F
u

n
ct

io
n

M
at

ri
c

A
O

S
M

A
S

M
A

M
R

F
O

E
O

S
F

O
H

H
O

S
S

A
W

O
A

M
u

lt
im

o
d

al
te

st
fu

n
ct

io
n

(fi
x

ed
)

f 1
4

A
v

e
0
.9
9
8
0

0
.9
9
8
0

1
.3

8
1

0
0
.9
9
8
0

8
.2

4
1

5
1

.3
4

9
5

1
.1

0
2

9
0
.9
9
8
0

S
td

9
.2

5
E

-1
4

2
.0

0
E

-1
2

1
.0

7
E
?

0
0

1
.6

7
E

-1
6

4
.4

7
E
?

0
0

9
.3

8
E

-0
1

3
.0

8
E

-0
1

1
.2

7
E

-1
2

f 1
5

A
v

e
4

.8
2

E
-0

4
5

.2
2

E
-0

4
8

.0
0

E
-0

4
3

.5
8

E
-0

3
3

.5
2

E
-0

4
4
.2
7
E
-0
4

1
.6

7
E

-0
3

5
.5

2
E

-0
4

S
td

2
.0

8
E

-0
4

2
.1

9
E

-0
4

4
.4

4
E

-0
4

7
.4

8
E

-0
3

4
.7

3
E

-0
5

3
.3

8
E

-0
4

6
.2

0
E

-1
3

3
.4

3
E

-0
4

f 1
6

A
v

e
2

1
.0
3
1
6

2
1
.0
3
1
6

2
1
.0
3
1
6

2
1
.0
3
1
6

-
1

.0
3

1
4

2
1
.0
3
1
6

-
0

.9
7

7
7

2
1
.0
3
1
6

S
td

1
.1

3
E

-1
0

1
.0

9
E

-0
9

5
.6

5
E

-1
6

6
.1

3
E

-1
6

1
.0

9
E

-0
3

1
.6

1
E

-0
9

5
.3

0
E

-0
2

1
.6

9
E

-1
0

f 1
7

A
v

e
0
.3
9
7
9

0
.3
9
7
9

0
.3
9
7
9

0
.3
9
7
9

0
.4

1
8

3
0
.3
9
7
9

0
.4
3
0
9

0
.3
9
7
9

S
td

1
.4

4
E

-0
8

5
.9

9
E

-0
8

0
0

7
.4

0
E

-0
2

4
.8

7
E

-0
5

2
.8

8
E

-0
2

9
.3

3
E

-0
9

f 1
8

A
v

e
3

3
3

3
9

.1
1

5
4

3
9

.2
4

6
6

3

S
td

6
.7

0
E

-0
9

4
.5

5
E

-1
1

2
.2

9
E

-1
5

1
.4

5
E

-1
5

1
.6

7
E
?

0
1

3
.0

6
E

-0
7

7
.1

8
E
?

0
0

1
.1

3
E

-0
8

f 1
9

A
v

e
2

3
.8

6
2

6
2

3
.8
6
2
8

2
3
.8
6
2
8

2
3
.8
6
2
8

-
3

.8
1

8
7

-
3

.8
5

8
4

-
3

.8
2

6
0

-
3

.8
5

8
5

S
td

5
.9

1
E

-0
4

2
.2

5
E

-0
7

2
.6

0
E

-1
5

2
.5

0
E

-1
5

5
.5

0
E

-0
2

7
.2

3
E

-0
3

2
.5

9
E

-0
2

3
.9

9
E

-0
3

f 2
0

A
v

e
2

3
.2
5
0
1

2
3

.2
4

8
9

-
3

.2
7

9
8

-
3

.2
3

6
9

-
3

.0
2

5
8

-
3

.0
5

0
1

-
2

.8
1

3
1

-
2

.9
0

2
4

S
td

6
.2

8
E

-0
2

5
.9

1
E

-0
2

5
.7

8
E

-0
2

9
.8

1
E

-0
2

1
.7

6
E

-0
1

1
.5

1
E

-0
1

1
.9

4
E

-0
1

4
.4

8
E

-0
1

f 2
1

A
v

e
2

1
0
.1
5
3
2

2
1

0
.1

5
2

9
-

7
.8

5
8

9
-

8
.5

9
6

4
-

4
.9

9
7

9
-

5
.3

5
8

6
-

8
.4

4
1

0
-

5
.0

5
5

2

S
td

2
.3

9
E

-0
5

2
.4

6
E

-0
4

2
.8

0
E
?

0
0

2
.5

1
E
?

0
0

8
.6

2
E

-0
2

1
.1

9
E
?

0
0

2
.5

6
E
?

0
0

5
.5

5
E

-0
6

f 2
2

A
v

e
2

1
0
.4
0
2
9

2
1

0
.4

0
2

6
-

7
.2

4
1

7
-

8
.3

6
5

3
-

5
.2

3
0

4
-

5
.0

8
4

3
-

9
.3

7
8

1
-

5
.0

8
7

7

S
td

3
.4

4
E

-0
5

2
.1

8
E

-0
4

3
.2

2
E
?

0
0

3
.0

5
E
?

0
0

1
.2

6
E
?

0
0

3
.7

7
E

-0
3

2
.1

3
E
?

0
0

1
.0

9
E

-0
5

f 2
3

A
v

e
2

1
0
.5
3
6
4

2
1

0
.5

3
6

0
-

7
.7

0
7

2
-

9
.2

7
7

3
-

5
.0

3
9

8
-

5
.4

4
3

1
-

8
.6

3
1

1
-

5
.1

2
8

5

S
td

2
.6

9
E

-0
5

3
.3

6
E

-0
4

3
.0

2
E
?

0
0

2
.6

5
E
?

0
0

1
.0

9
E

-0
1

1
.2

3
E
?

0
0

2
.6

1
E
?

0
0

7
.0

0
E

-0
6

C
o

m
p

o
si

ti
o

n
te

st
fu

n
ct

io
n

(C
E

C
-

2
0

1
4

)

C
E

C
1

4
�

F
2

3
A

v
e

2
5
0
0

2
5
0
0

2
5
0
0

2
6

1
5

.3
2

9
0

2
5

0
0

.0
0

0
0

0
1

2
5
0
0

2
5
0
0

2
5
0
0

S
td

0
0

0
1

.8
2

E
-0

1
8

.8
8

E
-0

7
3

.0
1

E
-1

2
1

.3
9

E
-0

5
1

.9
7

E
-0

8

C
E

C
1

4
�

F
2

4
A

v
e

2
6
0
0

2
6
0
0

2
6
0
0

2
6

0
0

.0
2

1
3

2
6

0
0

.0
0

0
5

2
6

0
0

.0
0

0
7

2
6

0
0

.0
0

2
6

2
6

0
0

.2
9

3
2

S
td

0
0

0
8

.2
9

E
-0

3
2

.7
5

E
-0

4
1

.5
1

E
-0

3
1

.0
3

E
-0

2
1

.1
8

E
-0

1

C
E

C
1

4
�

F
2

5
A

v
e

2
7
0
0

2
7
0
0

2
7
0
0

2
7

0
1

.3
4

7
9

2
7
0
0

2
7
0
0

2
7

0
5

.4
0

8
1

2
7
0
0

S
td

0
0

0
4

.1
9

E
?

0
0

1
.0

9
E

-0
8

0
3

.0
1

E
?

0
1

3
.3

1
E

-1
0

C
E

C
1

4
�

F
2

6
A

v
e

2
7
0
7
.1
4
8
3
1

2
7

0
0

.7
3

5
0

2
7

0
0

.6
3

6
6

2
7

2
6

.0
9

0
4

2
7

7
3

.4
6

6
8

2
7

7
5

.7
7

0
7

2
7

2
0

.4
6

4
9

2
7

0
0

.8
1

3
1

S
td

2
.4

8
E
?

0
1

1
.1

6
E

-0
1

1
.5

0
E

-0
1

4
.4

3
E
?

0
1

4
.2

2
E
?

0
1

4
.1

8
E
?

0
1

1
.4

3
E
?

0
1

1
.6

7
E

-0
1

C
E

C
1

4
�

F
2

7
A

v
e

2
9
0
0

2
9
0
0

2
9

2
3

.2
5

8
0

9
2

3
2

9
0

.7
9

6
9

2
9
0
0

2
9
0
0

3
3

6
9

.1
8

8
4

2
9
0
0

S
td

0
0

1
2

9
.4

9
5

5
7

3
8

7
.6

2
E
?

0
1

1
.2

6
E

-0
7

8
.9

0
E

-1
2

5
.9

0
E
?

0
2

3
.0

5
E

-0
9

C
E

C
1

4
�

F
2

8
A

v
e

3
0
0
0

3
0
0
0

3
0
0
0

3
8

2
3

.9
2

1
3

3
0
0
0

3
0
0
0

4
7

8
2

.6
9

9
1

3
0
0
0

S
td

0
0

0
2

.2
5

E
?

0
2

3
.2

5
E

-0
7

1
.5

7
E

-1
1

2
.3

1
E
?

0
3

7
.6

9
E

-0
9

F
ri

ed
m

an
’s

m
ea

n
ra

n
k

2
.4
3
1
0

3
.0

5
1

7
3

.5
1

7
2

4
.7

4
1

4
5

.9
6

5
5

4
.4

3
1

0
5

.8
9

6
6

5
.9

6
5

5

R
an

k
1

2
3

5
7

4
6

8

B
o

ld
v

al
u

es
re

p
re

se
n

t
b

et
te

r
re

su
lt

s

M. K. Naik et al.

123

f8 � f23ð Þ, and composition test functions (CEC14 � F23 to

CEC14 � F28). The results presented in Table 2 are eval-

uated for 31 independent runs to obtain the average value

‘Ave’ and standard deviation ‘Std’ for 30-dimensional test

cases (except multimodal test functions with fixed dimen-

sions f14 � f23) with 15,000 maximum function evaluation.

The unimodal test functions f1 � f7 are designed to test

the exploitation ability of the optimization algorithm. From

the results presented in Table 2, AOSMA obtains the

optimal minima for the test functions f1 � f4. The AOSMA

has shown superior results for test functions f7 compared to

another optimization algorithm. For the test function f6,

AOSMA shows a significant improvement over its prede-

cessors SMA and has shown superiority over SMA, SFO,

HHO, and WOA. However, for the test function f5,

AOSMA results are like the SMA. However, the results are

better than MRFO, EO, and WOA.

The multimodal test functions f8 � f23ð Þ have a higher

number of local optima, so these test functions are used to

analyse the optimizer to verify how efficiently they explore

the search space to reach the global minima. From the

results presented in Table 2, it is noted that the AOSMA

has shown superiority, among other optimization algo-

rithms to obtain the optimal values. The AOSMA

Fig. 3 Boxplot of several test benchmark functions

Adaptive opposition slime mould algorithm

123

outperformed other optimization algorithms on test func-

tions f8 and f21 � f23 to obtain the global minimum. The

AOSMA obtains the global minima for test functions f9 and

f11 and consistent optimal solution for test function f10 (as

SMA, MRFO, EO, and HHO). However, for the test

functions f12 and f13, AOSMA has shown significant

improvement over SMA, although the results are not the

best among other optimizers. Moreover, the results of

multimodal test functions with fixed dimensions f14 � f23ð Þ
have shown similar results. However, AOSMA has shown

superiority, among other optimization algorithms to

achieve global optimal results in f14, f16 � f19, and f21 � f23.

The compositions test functions from the IEEE CEC

2014 test suite are used to test the optimization algorithm

that simulates to real search domain with many local

minima. A comparative result of AOSMA with other

optimization algorithm results is presented in Table 2 of

six composition functions (CEC14 � F23 to

CEC14 � F28). The AOSMA has shown similar results as

MRFO, SMA, and WOA for all reported composition

functions. However, AOSMA has shown some improve-

ment over SFO, HHO, and SSA for composition functions

like CEC14 � F26.

The result presented in Table 2 are obtained based on 31

independent runs, so for better understanding, a boxplot of

four test functions from each unimodal, multimodal, mul-

timodal with fixed dimensions and composition categories

are presented in Fig. 3. From Fig. 3, one can visualize that

Table 3 p-values with 5% significance for the test functions using Wilcoxon rank-sum test (p-values greater than 0.05 are shown in boldface)

Test functions SMA MRFO EO SFO HHO SSA WOA

f1 5.00E 2 01 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10

f2 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10

f3 1.00E 1 00 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 1.86E - 09 9.31E - 10

f4 1.86E - 09 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10 9.31E - 10

f5 2.94E - 02 3.40E - 05 1.92E - 04 1.07E - 02 8.78E - 04 9.31E - 10 2.98E - 08

f6 9.31E - 10 1.50E 2 01 2.98E - 08 9.31E - 10 7.20E 2 01 9.31E - 10 9.31E - 10

f7 2.94E - 02 1.92E - 04 9.31E - 10 2.94E - 02 7.08E 2 02 3.33E - 03 9.31E - 10

f8 2.98E - 08 9.31E - 10 9.31E - 10 8.78E - 04 4.65E - 06 9.31E - 10 9.31E - 10

f9 1.00E 1 00 1.00E 1 00 1.00E 1 00 4.88E - 04 1.00E 1 00 3.91E - 03 9.31E - 10

f10 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 1.00E 1 00 1.95E - 03 9.31E - 10

f11 1.00E 1 00 1.00E 1 00 1.00E 1 00 1.56E - 02 1.00E 1 00 1.56E - 02 1.56E - 02

f12 1.92E - 04 1.00E 1 00 9.31E - 10 9.31E - 10 3.40E - 05 9.31E - 10 9.31E - 10

f13 1.92E - 04 9.31E - 10 2.81E 2 01 8.78E - 04 8.78E - 04 9.31E - 10 9.31E - 10

f14 3.40E - 05 1.92E - 04 9.31E - 10 9.31E - 10 9.31E - 10 8.78E - 04 1.92E - 04

f15 2.81E 2 01 1.50E 2 01 2.94E - 02 1.50E 2 01 2.81E 2 01 9.31E - 10 1.00E 1 00

f16 7.08E 2 02 9.31E - 10 9.31E - 10 9.31E - 10 1.00E 1 00 9.31E - 10 1.07E - 02

f17 1.00E 1 00 9.31E - 10 9.31E - 10 9.31E - 10 1.50E 2 01 9.31E - 10 3.33E - 03

f18 2.98E - 08 9.31E - 10 9.31E - 10 9.31E - 10 3.33E - 03 9.31E - 10 2.94E - 02

f19 1.92E - 04 9.31E - 10 9.31E - 10 4.63E - 07 4.65E - 06 9.31E - 10 7.20E 2 01

f20 2.81E 2 01 3.40E - 05 7.08E 2 02 4.63E - 07 4.63E - 07 9.31E - 10 4.63E - 07

f21 8.78E - 04 4.73E 2 01 4.73E - 01 9.31E - 10 9.31E - 10 7.08E 2 02 9.31E - 10

f22 2.98E - 08 1.00E 1 00 1.50E 2 01 9.31E - 10 9.31E - 10 2.98E - 08 9.31E - 10

f23 9.31E - 10 1.00E 1 00 8.78E - 04 9.31E - 10 9.31E - 10 2.98E - 08 9.31E - 10

CEC14 � F23 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 3.91E - 03 3.13E - 02 9.31E - 10

CEC14 � F24 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 7.45E - 09 3.13E - 02 9.31E - 10

CEC14 � F25 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 1.00E 1 00 4.88E - 04 9.31E - 10

CEC14 � F26 7.20E 2 01 3.33E - 03 1.07E - 02 2.98E - 08 5.77E - 08 4.63E - 07 4.73E 2 01

CEC14 � F27 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 2.44E - 04 3.81E - 06 9.31E - 10

CEC14 � F28 1.00E 1 00 1.00E 1 00 9.31E - 10 9.31E - 10 9.77E - 04 3.05E - 05 9.31E - 10

þ 14 (48.3%) 15 (51.7%) 24 (82.8%) 28 (96.6%) 20 (69.0%) 28 (96.6%) 26 (89.7%)

� 10 (34.5%) 11 (38.0%) 02 (06.9%) 0 05 (17.2%) 0 0

� 05 (17.2%) 03 (10.3%) 03 (10.3%) 01 (03.4%) 04 (13.8%) 01 (03.4%) 03 (10.3%)

M. K. Naik et al.

123

the AOSMA has shown superior consistency among vari-

ous optimization algorithms.

Further, a statistical analysis of Friedman’s mean rank

test on the average value ‘Ave’ data presented in Table 2 is

conducted, where the AOSMA ranked first among other

optimization algorithms, as reported at the bottom of

Table 2. In addition, a Wilcoxon signed-rank test is con-

ducted to obtain p-value at a ¼ 0:05 and presented in

Table 3. The Wilcoxon signed-rank test is used to find a

substantial difference to obtain the fitness value by various

methods based on p-value. A comparison of the p-value of

AOSMA with another optimization algorithm is done using

significantly better (þ), significantly equal (�), and sig-

nificantly poorer (�). From Table 3, it is seen that the

AOSMA has shown significantly better results. These are

summarized as 48.3% over SMA, 51.7% over MRFO,

82.8% over EO, 96.6% over SFO, 69.0% over HHO, 96.6%

over SSA, and 89.7% over WOA. From these data, it can

be observed that the AOSMA has evolved as a better

optimization algorithm.

3.4 AOSMA’s comparative convergence analysis

This section presents a comparative convergence curve of

AOSMA with other optimization algorithms for iterations 1

through 500. For the analysis, we have considered 5 from

unimodal (f1 � f4 and f7), 5 from multimodal (f10, f11,f13, f15

and f23) and 2 from composition (CEC14 � F24 and

CEC14 � F27) test functions. Figure 4 shows a compara-

tive analysis of the convergence curve. Based on Fig. 4, we

come up with some critical analysis as given below:

Fig. 4 Convergence curve

Adaptive opposition slime mould algorithm

123

• f1 � f4: At the beginning of the search process, the

AOSMA has shown lagging behind MRFO, however,

during the latter stage it shows superiority to obtain the

optimal results.

• f5: The AOSMA has shown a superiority convergence

over another optimization algorithm.

• f10 and f11: The AOSMA convergence is like the SMA,

MRFO, and HHO to reach a globally optimal solution.

• f13: The AOSMA convergence has shown little

improvement over SMA, however, it still lags behind

SSA, HHO, SFO, and EO.

• f15 and f23: All the optimization algorithms are efficient

in reaching the optimal solution, however, AOSMA has

shown a better convergence.

• CEC14 � F24 and CEC14 � F27: The AOSMA con-

vergence is the same as MRFO.

Based on these analyses, the AOSMA has shown an

improved convergence due to the enhancement of the

exploitation and exploration abilities.

3.5 AOSMA’s comparative scalability analysis

In this section, a scalability analysis is performed to

understand the impact of dimensions on the AOSMA

performance. Its performances are compared with other

optimization algorithms. For the experiment, the uni-

modal/multimodal test functions f1 � f13 are chosen with

scalable dimensions d ¼ 10; 30; 50; 100; 200; 300f g. A

comparative result based on the average fitness value ‘Ave’

on scalable dimensions for 31 independent runs with

15,000 maximum function evaluation is reported in Fig. 5.

From Fig. 5, we can find in most of the cases, such as

f1 � f4, f7 and f9 � f11, that the AOSMA optimal results are

Fig. 5 Scalability analysis

M. K. Naik et al.

123

independent of dimensionality changes. For the test func-

tion f8, the scalable results are like SMA and HHO (we

have not considered the SSA, MRFO, and SFO in this test

case, as these algorithms produce a large deviation on

results for the optimal value). However, for other test

functions, the AOSMA has shown marginally degraded

results on increasing dimensionality. For a better under-

standing of the overall performance of AOSMA on scalable

test functions, a Friedman means rank test is conducted,

based on the average fitness value obtained and reported in

Fig. 6. Based on the results shown in Fig. 6, the AOSMA

ranked one irrespective of dimensions.

4 Conclusion

This work presented an adaptive opposition slime mould

algorithm (AOSMA) for function optimization. Neverthe-

less, the proposed algorithm exhibits better exploration and

exploitation, because it adaptively decides whether to use

the OBL or not. Need to mention here that the use of the

position information from the opposition search space

greatly enshrines the performances of the AOSMA. From

Fig. 4, it is seen that the suggested AOSMA has shown

better convergence than other state-of-the-art methods,

because of its enhanced exploration and exploitation

capabilities. Figure 5 shows the scalability feature of the

proposed AOSMA. From the statistical analysis, it is

observed that the performances are better than the recent

methods. Moreover, the suggested AOSMA is more con-

sistent over other optimizers, which is implicit in Fig. 3.

From Table 3, it is observed that the AOSMA has shown

explicitly better results. In summary, this algorithm uses

only one random search agent, as opposed to the SMA,

reducing 50 per cent chances of the misguidance of the

exploration phase in certain instances. Furthermore, this

algorithm inherently includes an adaptive mechanism to

decide the use of the opposition-based learning on demand

to delimit the exploration phase. To figure out, this is the

reason behind the improved performances achieved.

Finally, it is believed that the suggested algorithm would

be useful for function optimization to solve real-world

engineering problems.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Fig. 6 Friedman mean rank

score and ranking based on

scalability results of test

functions f1 � f13

Adaptive opposition slime mould algorithm

123

References

Ahmadianfar I, Heidari AA, Gandomi AH et al (2021) RUN beyond

the metaphor: an efficient optimization algorithm based on

Runge Kutta method. Expert Syst Appl 181:115079. https://doi.

org/10.1016/j.eswa.2021.115079

Dhargupta S, Ghosh M, Mirjalili S, Sarkar R (2020) Selective

opposition based grey wolf optimization. Expert Syst Appl

151:113389. https://doi.org/10.1016/j.eswa.2020.113389

Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press,

Cambridge

Faramarzi A, Afshar M (2014) A novel hybrid cellular automata-

linear programming approach for the optimal sizing of planar

truss structures. Civ Eng Environ Syst 31:209–228. https://doi.

org/10.1080/10286608.2013.820280

Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020)

Equilibrium optimizer: a novel optimization algorithm. Knowl-

Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.

105190

Feoktistov V (2006) Differential evolution. Springer, New York

Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–206.

https://doi.org/10.1287/ijoc.1.3.190

Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32.

https://doi.org/10.1287/ijoc.2.1.4

Guha R, Ghosh M, Mutsuddi S et al (2020) Embedded chaotic whale

survival algorithm for filter–wrapper feature selection. Soft

Comput. https://doi.org/10.1007/s00500-020-05183-1

Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks

optimization: algorithm and applications. Future Gener Comput

Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Michigan

Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for

optimization: Squirrel search algorithm. Swarm Evol Comput

44:148–175. https://doi.org/10.1016/j.swevo.2018.02.013

Karaboga D, Basturk B (2008) On the performance of artificial bee

colony (ABC) algorithm. Appl Soft Comput 8:687–697. https://

doi.org/10.1016/j.asoc.2007.05.007

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural

networks, 1995. Proceedings., IEEE International Conference

on, vol 4. pp 1942–1948

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Science (80-) 220:671. https://doi.org/10.

1126/science.220.4598.671

Li S, Chen H, Wang M et al (2020) Slime mould algorithm: a new

method for stochastic optimization. Future Gener Comput Syst.

https://doi.org/10.1016/j.future.2020.03.055

Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and

evaluation criteria for the CEC 2014 special session and

competition on single objective real-parameter numerical

optimization

Liu Y, Heidari AA, Ye X et al (2021) Boosting slime mould

algorithm for parameter identification of photovoltaic models.

Energy 234:121164. https://doi.org/10.1016/j.energy.2021.

121164

Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning:

a literature review. Swarm Evol Comput 39:1–23. https://doi.

org/10.1016/j.swevo.2017.09.010

Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv

Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.

01.008

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv

Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.

12.007

Naik MK, Panda R (2016) A novel adaptive cuckoo search algorithm

for intrinsic discriminant analysis based face recognition. Appl

Soft Comput 38:661–675. https://doi.org/10.1016/j.asoc.2015.

10.039

Naik MK, Wunnava A, Jena B, Panda R (2020) 1. Nature-inspired

optimization algorithm and benchmark functions: a literature

survey. In: Bisht DCS, Ram M (eds) Computational intelligence,

3rd edn. De Gruyter, Berlin, Boston, pp 1–26

Qian S, Wu H, Xu G (2020) An improved particle swarm

optimization with clone selection principle for dynamic eco-

nomic emission dispatch. Soft Comput 24:15249–15271. https://

doi.org/10.1007/s00500-020-04861-4

Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based

optimization: an optimization method for continuous non-linear

large scale problems. Inf Sci (ny) 183:1–15. https://doi.org/10.

1016/j.ins.2011.08.006

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravita-

tional search algorithm. Inf Sci (ny) 179:2232–2248. https://doi.

org/10.1016/j.ins.2009.03.004

Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a

novel nature-inspired metaheuristic algorithm for solving con-

strained engineering optimization problems. Eng Appl Artif

Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

Talbi E-G (2009) Metaheuristics. John Wiley & Sons, Inc., Hoboken,

NJ, USA

Tizhoosh HR (2005) Opposition-based learning: a new scheme for

machine intelligence. In: International conference on computa-

tional intelligence for modelling, control and automation and

international conference on intelligent agents, web technologies

and internet commerce (CIMCA-IAWTIC’06). pp 695–701

Tu J, Chen H, Wang M, Gandomi AH (2021) The colony predation

algorithm. J Bionic Eng 18:674–710. https://doi.org/10.1007/

s42235-021-0050-y

Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuris-

tic algorithm for global optimization problems. Memetic Comput

10:151–164. https://doi.org/10.1007/s12293-016-0212-3

Wang G-G, Deb S, Cui Z (2019) Monarch Butterfly Optimization.

Neural Comput Appl 31:1995–2014. https://doi.org/10.1007/

s00521-015-1923-y

Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/

10.1109/4235.585893

Wunnava A, Kumar Naik M, Panda R et al (2020a) A differential

evolutionary adaptive Harris hawks optimization for two

dimensional practical Masi entropy-based multilevel image

thresholding. J King Saud Univ - Comput Inf Sci. https://doi.

org/10.1016/j.jksuci.2020.05.001

Wunnava A, Naik MK, Panda R et al (2020b) An adaptive Harris

hawks optimization technique for two dimensional grey gradient

based multilevel image thresholding. Appl Soft Comput

95:106526. https://doi.org/10.1016/j.asoc.2020.106526

Wunnava A, Naik MK, Panda R et al (2020c) A novel interdepen-

dence based multilevel thresholding technique using adaptive

equilibrium optimizer. Eng Appl Artif Intell 94:103836. https://

doi.org/10.1016/j.engappai.2020.103836

Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games

search: Visions, conception, implementation, deep analysis,

perspectives, and towards performance shifts. Expert Syst Appl

177:114864. https://doi.org/10.1016/j.eswa.2021.114864

Yang X-S (2014) Cuckoo search and firefly algorithm: overview and

analysis. In: Yang X-S (ed) Cuckoo search and firefly algorithm.

Springer, New York, pp 1–26

Yao X, Yong L, Guangming L (1999) Evolutionary programming

made faster. Evol Comput IEEE Trans 3:82–102. https://doi.org/

10.1109/4235.771163

M. K. Naik et al.

123

https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.eswa.2020.113389
https://doi.org/10.1080/10286608.2013.820280
https://doi.org/10.1080/10286608.2013.820280
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1007/s00500-020-05183-1
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.swevo.2018.02.013
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.energy.2021.121164
https://doi.org/10.1016/j.energy.2021.121164
https://doi.org/10.1016/j.swevo.2017.09.010
https://doi.org/10.1016/j.swevo.2017.09.010
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.asoc.2015.10.039
https://doi.org/10.1016/j.asoc.2015.10.039
https://doi.org/10.1007/s00500-020-04861-4
https://doi.org/10.1007/s00500-020-04861-4
https://doi.org/10.1016/j.ins.2011.08.006
https://doi.org/10.1016/j.ins.2011.08.006
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.engappai.2019.01.001
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1007/s42235-021-0050-y
https://doi.org/10.1007/s12293-016-0212-3
https://doi.org/10.1007/s00521-015-1923-y
https://doi.org/10.1007/s00521-015-1923-y
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.jksuci.2020.05.001
https://doi.org/10.1016/j.jksuci.2020.05.001
https://doi.org/10.1016/j.asoc.2020.106526
https://doi.org/10.1016/j.engappai.2020.103836
https://doi.org/10.1016/j.engappai.2020.103836
https://doi.org/10.1016/j.eswa.2021.114864
https://doi.org/10.1109/4235.771163
https://doi.org/10.1109/4235.771163

Yu C, Heidari AA, Xue X et al (2021) Boosting quantum rotation gate

embedded slime mould algorithm. Expert Syst Appl 181:115082.

https://doi.org/10.1016/j.eswa.2021.115082

Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization:

An effective bio-inspired optimizer for engineering applications.

Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.

engappai.2019.103300

Zhao S, Wang P, Heidari AA et al (2021) Multilevel threshold image

segmentation with diffusion association slime mould algorithm

and Renyi’s entropy for chronic obstructive pulmonary disease.

Comput Biol Med 134:104427

Zhu F, Chen D, Zou F (2020) A novel hybrid dynamic fireworks

algorithm with particle swarm optimization. Soft Comput.

https://doi.org/10.1007/s00500-020-05308-6

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Adaptive opposition slime mould algorithm

123

https://doi.org/10.1016/j.eswa.2021.115082
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1016/j.engappai.2019.103300
https://doi.org/10.1007/s00500-020-05308-6

	Adaptive opposition slime mould algorithm
	Abstract
	Introduction
	Proposed work
	Mathematical formulation of AOSMA
	Opposition-based learning
	Adaptive decision strategy

	Pseudocode of AOSMA

	Results and discussion
	Test functions, compared algorithms, and experimental setup
	Qualitative analysis of AOSMA
	AOSMA’s comparative performance on test functions
	AOSMA’s comparative convergence analysis
	AOSMA’s comparative scalability analysis

	Conclusion
	References

