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Abstract
Heuristic computational intelligence techniques are widely used in combinatorial optimization problems, essentially in

large size configurations. Bio-inspired heuristics such as PSO, FA or FPA showed their capacities to solve such problems.

Bi-heuristic optimization consists of using a couple of techniques and a collaboration mechanism. This paper reviews the

major contributions in solving TSP with bi-heuristics and presents a new hybridization scheme based on FPA, ACO with

Ls, ant supervised by flower pollination with local search, ASFPA-Ls; as well as the impact of social and cognitive PSO for

the ant supervised by PSO with local search, ASPSO-Ls. AS-chaotic-PSO-Ls which stands for ant supervised by chaotic

PSO local search is also investigated. The meta-heuristic algorithms (FPA, PSO or chaotic PSO) and ant colony opti-

mization are used with a hierarchical collaboration schema in addition to a local search mechanism. In this work, the local

search strategy, Ls, used is the 2-opt method; the proposals are called, respectively, ASFPA-Ls, cognitive ant supervised by

PSO with local search, Co-ASPSO-Ls, social-ASPSO-Ls and AS-chaotic-PSO-Ls; where ACO is coupled with a local

search heuristic mechanism called 2-opt, and a set of meta-heuristics, FA, FPA and PSO asked to adapt ACO parameters

while running. Comparative experimental investigations are conducted using the TSP test bench. Proposed hybridizations

attended fair solutions for the TSP problems used in the experimental investigations including berlin52, St70, eil76, rat 99,

eil101, KroA100, Ch150 and kroA200. A good balance performance/time is found with the social ant supervised by PSO

with local search, So-ASPSO-Ls. The cognitive ant supervised by PSO with local search, Co-ASPSO-Ls comes in the

second position in terms of time effectiveness with close performances to AS-chaoticPS0-LS, all proposed approaches

returned low rate errors or BKS for used test benches: berlin52, st70, eil76, rat99, kroA100 and kroA200.
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1 Introduction

The optimization problem consists of solving problems by

minimizing or maximizing their functions (Dhiman 2019).

Each function can generate many possible solutions. In

optimization problems, we aim to search for the closest

optimum, which respects specific constraints. An opti-

mization problem can be defined as a group of parameters

where the correct ones determine the optimal solution. The

traveling salesman problem (TSP) is a combinatorial

optimization problem in which a salesman aims to visit a

set of cities and reach back to his starting locality. It is

required to pass each city once at a minimum cost. In

general, the tour length stands for cost of a solution; it is

the total distance that the salesmen have to cross. The

relevance of heuristic and bio-inspired solvers for such a

problem comes from the fact that such techniques are able

to find out an acceptable solution with respect to time/

performance balance. The main bio-inspired swarm tech-

niques are flower pollination algorithm (Yang 2013), par-

ticle swarm optimization (Kennedy and Eberhart 1995), ant

colony optimization (Dorigo and Birattari 2007), firefly

algorithms (Yang 2010), bee algorithm (Karaboga 2005;

Karaboga and Gorkemli 2011) or bat algorithm (Saji and

Riffi 2016).

FA, firefly algorithm, is typically a continuous opti-

mization heuristic, discrete variant was then proposed for

the combinatorial optimization problems such as traveling

salesman problem, TSP. To get initial solutions, authors

use a uniform distribution in the search space. For initial

solution, the algorithm starts with a greedy or nearest

neighborhood algorithm. Initial random generations help

the algorithm to find good solutions. To construct the tour,

two phases are needed: distance function and movement.

The first one consists of calculating distance between two

fireflies (permutation), two rules to calculate distance are

proposed which are Hamming and swap distance. The

closer permutations are solutions with small fitness func-

tion. Fireflies are modeled with a permutation schema. To

represent the distance between two fireflies, authors use the

mutation inverse. New paths are built without missing the

previous ones (Kumbharana and Pandey 2013). FA with

greedy approach was proposed in Saraei et al. (2015) to

solve the TSP and where the greedy algorithm was inserted

to increase the quality of solutions. In Wang et al. (2016),

integrated the 2-opt algorithm, which is a local search

algorithm, into the firefly to increase the algorithm accu-

racy and accelerate the convergence. In addition to the

combing method and the use of 2-opt, the article introduces

a new fluorescent brightness mechanism. A combination of

firefly and simulated annealing was proposed in (Nekouie

and Yaghoobi 2015) in order to merge the advantages of

both heuristics consisting of searching for a global opti-

mum while considering the local one. A combination of

ACO and FA appears in Olief et al. (2016) in which ACO

search for the global solution and the FA focuses on local

optimums using its neighborhood mechanism. FA is the

first to search for local best tours then the ACO is involved

in searching for the best tour ever found from the obtained

FA results.

In Ariyaratne et al. (2016), the authors used the firefly

algorithm to optimize ACO settings. They aim to find the

global best path by optimizing a, b and q. This proposed
approach is applied to the symmetric traveling salesman

problem. The FA algorithm is integrated into the ACO to

tune its parameters. Tsai et al. (2004) used discrete firefly

to solve the distributed network configuration problem. To

optimize the best tour, a modified FA-based on fuzzy

control was proposed in (Bidar and Kanan 2013). In Rizk-

Allah et al. (2013), a novel hybridization method is based

on ant colony optimization and firefly algorithm. This

approach integrates two phases: The first one is running

ACO to find initial solutions by the group of ants, while the

second one is running FA to find the best ACO inputs. With

fireflies’ population equal to ants group size, they obtain

the same solution number as the previous one. Firefly

algorithm and PSO are approaches proposed in Kora and

Rama Krishna (2016) to optimize the detection of bundle

branch block. To assess the algorithm performance, authors

use MIT-BIH database for their tests. One of the most

FAPSO features is to not consider local optima. FA is

integrated into ACO to solve TSP problem. In Taengtang

et al. (2013), authors changed the pheromone equation

basing on FA algorithm where the substrate of the first

algorithm (ACO) plays the role of attractiveness in the

second one (firefly). In (Twir et al. 2018), an ant supervised

by firefly with local search mechanism is proposed, where

the ACO is in charge of solving the TSP, the FA is in

charge of optimizing ACO parameters and the 2-opt local

search mechanism is used to avoid local optimum (Kaveh

and Ghazaan 2019).

FPA was combined with several techniques and it shows

its efficiency. In AL-Wagih (2015), used a proposed

method based on flower pollination algorithm and chaos

theory to solve an integer programming problem and

chaotic maps to optimize the FPA variable. The authors

proved the proposed algorithm performance to solve the IP

system as an NP-hard problem (IFPCH). The proposed

method shows better solution than the standard FPA. It

helps the algorithm to ignore the local solution and run to

find the global one. A modified flower pollination is pro-

posed in Nabil (2016) based on hybridization between FPA

and the clonal selection theory (CSA). CSA consists to

form copies from the highest affinity antibodies to improve

the algorithm efficiency; the proposed method is applied to
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23 test benches. The modification is appeared in the pol-

lination local search process using the local search coeffi-

cient. In Zhang et al. (2016), an improved flower

pollination algorithm is proposed by Zhang. This algorithm

consists to combine Adaptive Gauss Mutation and Shuffled

Frog Leaping to ignore the local search optimum and the

late convergence. This combination enhances the swarm

diversity and increases the local search ability. This algo-

rithm shows a high ability in looking for a global solution

in addition to a faster convergence with precise solutions.

In order to solve FPA problems, authors use the Gauss

mutation to accelerate the search and ameliorate the solu-

tion quality. The proposed method is applied to four test

benches in which it finds higher quality solution more than

the standard FPA; the algorithm has a lower time con-

suming. In Valenzuela et al. (2017), a proposed method

based on the flower pollination algorithm and the fuzzy

inference system aims to enhance the ability of exploitation

and exploration by inserting a fuzzy system to control the

switching probability among the two behaviors’ of FPA; it

was then applied to solve set of mathematical test functions

and showed better results compared to ACO, PSO and GA.

The bat algorithm, BA, is also a bio-inspired technique

inspired from natural bat swarms, where all bats are

assumed to use eco-localization and that they are moving

by updating their positions in random way using a velocity

(vi) and a frequency (fi) (Yang and Gandomi 2012). The

BA is assumed to outperform the classical continuous

optimization techniques such as PSO or GA (Mirjalili et al.

2014). In binary bat algorithm, the position update leads to

a switching between (0) and (1) values (Mirjalili et al.

2014). A binary BA version was proposed in Rizk-Allah

and Hassanien (2018b) where authors combined a rough set

scheme (RSS) binary bat algorithm, BBA, with a local

search strategy, LSS. The new proposal is applied for the

0–1 knapsack problems which is a combinatorial opti-

mization one. A discrete BA, DBA, was proposed by Saji

and Riffi (2016) with application to TSP. In DBA, bats

select a frequency within an integer interval [1, n] where

(n) is the number of cities of a sub-tour and where positions

and velocities are obtained by a crossover operator instead

of the classical bat velocity equations.

Hybrid schema used is also to be investigated, hybrid

methods are based on a hybridization of a limited set of

bio-inspired techniques to get the advantages of each one

or to avoid the weaknesses of another (Elloumi et al. 2009).

The bi-heuristic optimization consists of combining two or

more heuristic techniques in order to solve a problem.

Combining techniques needs a hybridization schema and is

in general focused on global optimality criteria. In this

study, the focuses are made on proposing a hybridization

aiming to ensure to a heuristic to be self-adaptive for

combinatorial discrete problems. It consists of defining a

tuning strategy allowing resuming the heuristic dependence

to its own parameters. Basically, the proposed schema is

combining a discrete heuristic with continuous one; the

discrete heuristic is naturally suitable to handle combina-

torial optimization problems such as the TSP, the contin-

uous one is handling the first heuristic parameters. This

hybridization allowed the proposal to be self-adaptive. A

classical hybridization model involving PSO and ACO was

proposed in Rokbani et al. (2013a), where the ACO was

asked to solve the TSP while PSO used to adapt ACO

parameters the hybridization concerned inertia weight PSO

with ACO, the simplified PSO-ACO and fuzzy PSO-ACO

(Rokbani et al. 2013a), meanwhile early applications used

to be done on a local TSP test bench of Tunisia. The same

hybridization schema was then used in Mahia et al. (2015)

as well as in Kefiet al. (2016a, b), where at the difference of

Rokbani et al. (2013a, b) a local search mechanism was

added to the main hybridization schema with a comparative

application to a set of standard TSP instances, the impact of

swarm size for AS-PSO was also investigated in Kefi et al.

(2016). In Twir et al. (2018), the fuzzy PSO-ACO local

search, as well as the simplified PSO-ACO, with same idea

while with a different PSO variant was investigated in Twir

et al. (2017), the focus was made on simplified PSO with

application to classical TSP instances; in Rokbani et al.

(2019a), investigated the fuzzy PSO-ACO hybridization

while the gravitational PSO-ACO was subject to a com-

parative study in Rokbani et al. (2019b). A hybridization

between the firefly algorithm, FA, and ACO was proposed

in Twir et al. (2018) where the local search mechanism was

also used.

Meanwhile and regardless of the selected meta-heuris-

tics or bio-inspired technique to solve a problem, the per-

formances are always affected by the algorithms’

parameters; in Yang et al. (2013), authors pointed this

problem as a common problem to any meta-heuristics

technique and proposed a framework to limit the impact of

the parameters on performances. This paper investigates

the same field while proposing to combine a couple of

heuristics where one is in charge of the problem and the

other is in charge of parameters fitting, this may allow to

reduce the dependencies between algorithm performances

and algorithm parameters.

This paper presents four new hybridization schema

based on ant supervised by flower pollination, local search

algorithm, ASFPA-Ls, the cognitive ant supervised by PSO

with local search, Co-ASPSO-Ls, in which a cognitive PSO

is used to supervise the self-adaptation of the ACO

parameters. The So-ASPSO-Ls is a hybridization where a

social PSO is used to self-tune ACO and the chaotic-

ASPSO-Ls, where a chaotic PSO is introduced to self adapt

ACO. The proposed hybridizations are comparatively

evaluated based on a set of TSP instances.
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The remaining of the paper is organized as follows;

paragraph two presents the techniques and methods used in

the paper, the proposed hybridizations are detailed in

paragraph three. The experimental investigations are pre-

sented in paragraph four with comments and discussions

prior to conclusions and perspectives.

2 Techniques and methods

This paragraph starts with the traveling salesman problem

statement then details the main heuristics used in this paper

with focus on ACO, FA, FPA, SPSO and 2-opt local search

mechanism.

2.1 The traveling salesman problem

TSP, traveling salesman problem, is a mathematical prob-

lem that belongs to NP-hard problems consisting of visiting

a set of fixed cities once, each one with respect to the

shortest path. The salesman has to start from a given city

and then to move back to it. The TSP could be addressed as

a problem, and also as comparative test bench to measure

solvers’ capacities. A mathematical formulation of TSP

could stand as follows in Eqs. (1), (2) and (3).

D ¼
XN

i¼1;j¼2

XN

i 6¼j

xijcij ð1Þ

xij ¼
1 if the path goes from cityito cityj

0 otherwise

( )
ð2Þ

cij ¼ xi � xj
�� �� ð3Þ

where (d) stands for tour distance, which is also used as a

fitness function for CSPO-ACO, (N) is the number of cities

for given problem instance; xij is a binary coefficient; equal

to 1 if an arc is going from city i to city j and equal to 0

otherwise, see Eq. (2). The distance between city i and city

j is a 2D Euclidean distance, see Eq. (3). Equations (4) and

(5) ensure that each node (city) is visited only one time.

XN

j¼1;i6¼j

xij ¼ 1; i ¼ 1; 2; 3; . . .;Nð Þ ð4Þ

XN

i¼1;i6¼j

xij ¼ 1; ðj ¼ 1; 2; 3; . . .;NÞ ð5Þ

2.2 Ant colony optimization

It is a heuristic method introduced by Marco Dorigo

(2007). It showed a capacity in solving the TSP (Dorigo

and Gambardella 1997a). The heuristic based on the natural

ant’s behavior in food search using a biologic marker.

Agents use the pheromone to communicate with other ants

and transmit information about the shortest path passed.

TSP fitness is to find the best global tour passing all cities

and return to the start point. Ants have to generate short

tours using information accumulated during their search.

Ant exploits the trail deposit in the path to choose which

country will be visited from the current one. Ants prefer to

choose a city in which its incident has a lot of pheromones.

Initially, ants selected random cities, and then iteratively,

ants update their pheromone until a tour is complete.

Finally, ant having the shortest path updates its global tour,

GT, using the equation of pheromone trail update (7). To

evaluate the probability to engaged in a path from node (i)

to node (i),Pki;j Eq. (6) is used; where si;j stands for the

pheromone quantity between nodes i and j, Xi denotes ith
neighborhood, a; b are control parameters of the pher-

omone. Pki;j stands for the probability that the ant(k) will be

crossing the arc (i,j), see Fig. 1.

Pk
i;j ¼ ðsk�1

i;j Þa � gbi;j þ
X

jrXi

ðsk�1
i;j Þa � gbi;j ð6Þ

Ant has to choose the highest probability between Pk
i;o,

Pk
i;j, P

k
i;l and Pk

i;m to pass for the current city i to another one

(j, l, m, o) as in Fig. 1. In their food search process, ants

start by their locality, here assumed to a city, move from a

node to another and move back to the starting one, using

the shortest path. Ants select the next node to be visited

using a probabilistic approach, see Fig. 1. The pheromone

acts as a marker helping in search space exploration, it

gives a global map of the most used path on the search

space, allowing a local optimum avoidance. To update the

pheromone ants, use Eq. (7) where q is the pheromone

decay coefficient as in Dorigo and Gambardella (1997b).

if i; jð Þ 2 BestToursij ¼ 1� qð Þs k�1ð Þ
ij þ qDk

ij

elses k�1ð Þ
ij ¼ s k�1ð Þ

ij

ð7Þ

i

lj

om

Fig. 1 Stochastic ant strategy
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2.3 Flower pollination algorithm

FPA is a bio-inspired technique proposed by Xin-She Yang

(2013), based on flower plants reproduction process where

the pollen needs to be transferred from the reproduction

system of a plant to another, cross-pollination or itself, self-

pollination mainly by a pollinator which can be an insect or

a bird assumed to move randomly using a Levy flight (AL-

Wagih 2015). This process is called biotic pollination and

is assumed to a global search mechanism. The abiotic

process occurs essentially when a plan is self-pollinated

and is assumed to be a local search mechanism. The FPA

assumes also that reproduction probability is proportional

to the similarity of the involved flowers. This means that if

two flowers are similar, flower constancy is changed using

reproduction probability. To move from the local search to

the global search, a switching probability is used q [ [0, 1].

To move from a plant to another (global search), pollina-

tors use Eq. (8) where xtj and xtk are two solutions of j and k

plants, respectively. e is a random value.

xtþ1
i ¼ xti þ e xtj � xtk

� �
ð8Þ

For the local search, the pollinators use Eq. (9) where xti
is the solution of ith plant at step t, L is the strength of

pollen and xgbest is the current best solution.

xtþ1
i ¼ xti þ L xti � xgbest

� �
ð9Þ

2.4 Particle swarm optimization

PSO is a well-known heuristic introduced by Eberhart and

Kennedy (1995). It is based on miming the social intelli-

gence of animals societies such as bird flocks or fish banks,

where each individual is assumed to a particle with a very

limited task to perform, moving, and with a simple com-

munication facility allowing it to get informed about the

best solution found by group and also about the best

solutions in its own neighborhood.

Iteratively, the particles’ positions in the swarm are

updated according to Eqs. (10) and (11), where w stands

for inertia weight, c1 and c2 are, respectively, the cognitive

and the social coefficients,Plbest;Pgbest are the best local and

global positions.

viþ1 ¼ wvi þ C1 � randðÞ � Plbest þ xið Þ þ C2 � randðÞ
� Pgbest þ xi
� �

ð10Þ
xiþ1 ¼ xi þ viþ1 ð11Þ

The local best solution is fixed according to a topology

allowing fixing the size and the organization of the

neighborhood; in this paper, a random selection of particles

is used to fix it. The neighborhood size is fixed to the 20%

of the size of the swarm.

The cognitive and social factors, c1 and c2, control the

global behavior of the swarm, when c1[ c2, a cognitive

behavior is observed, such a behavior is supposed to

strengthen the exploration of the search space. When

c2[ c1, the swarm tends to have more cohesion and focus

on global optimum.

2.5 Simplified PSO

The simplified PSO was proposed by Pedersen and Chip-

perfield (2010); it is a PSO where the cognitive behavior

was simply neglected and the local best is ignored; this

simplifies PSO processing since the search for a local

solution is simply removed. Particles’ positions update is

operated using Eqs. (11) and (12).

viþ1 ¼ wvi þ C2 � randðÞ � Pgbest þ xi
� �

ð11Þ

xiþ1 ¼ xi þ vi ð12Þ

A hybridization of ACO with simplified PSO and a local

search mechanism was detailed in Rokbani et al.

(2019a, b).

2.6 Chaotic PSO

Chaotic particle swarm optimization, CPSO, is consisting

of using the classical PSO with the chaos search process

to perturb the best solution found by PSO. The chaotic

search algorithm, CSA, consists of setting a bounded

search space around a good solution; the bounded search

space is defined using a chaotic map applied to a given

solution, in order to see if a better one is just around. PSO

solution, represented by the swarm global best particle

position, is then modified with a random chaotic flight as

in Eq. (13),

PGlobalBest ¼ xPGlobalBest þ randðÞ � 2 � Yn � 1ð Þ ð13Þ

where PGlobalBest is the best solution found by PSO, Yn is the

chaotic variable.

Several chaotic maps are possible such as logistics map,

cubic map, Gauss Map, Sinc map, tent Map, Spense map or

cusp map…. In this paper, we are using the logistics map in

which the chaotic variable is iteratively modified following

Eq. (14)

Ynþ1 ¼ k � Yn � 1� Ynð Þ; 0\k\4 ð14Þ

where k stands for chaotic control parameter.
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2.7 Local search policy (2-opt)

The K-opt algorithm was proposed by Croes (1958), K-opt

is a local heuristic search algorithm; it consists to remove

for each node in the graph K connections, to reconnect

them in other positions and then to evaluate the new

proposition in terms of path length and to validate the

shortest one as a solution. K-opt has a major advantage; it

is an iterative paradigm inserted within heuristic while does

not modify its structure (Helsgaun 2009). The most popular

and known K-opt variants are 2-opt and 3-opt. Helsgaun

(2009) gave an overview of K-opt and its hybridization

with Lin–Kernighan algorithm to solve the traveling

salesman problem. 2-opt algorithm (Dorigo and Stutzle

2004) consists of removing two connections from the

current node and reconnect it to form another path without

missing the tour construction; the new optioned tour is

valid only if it is shorter than the initial one. 3-opt algo-

rithm works like the 2-opt but in place to remove two edges

and reconnect them. It consists of moving three edges and

there are two ways to reconnect those edges (Matai et al.

2010). Figure 2 illustrates how the 2-opt local process is

applied to a graph with four nodes.

2.8 Tour construction

Given a TSP of (N) cities, where Vi represents the city (i);

using a discrete meta-heuristic algorithm, a solution can be

iteratively built by combining cities configurations, so a

solution may be represented by a set TSPu = {Vx, Vy, Vi,

…VN}. Then, a distance is computed according to

Eqs. (1)–(5); this distance represents the tour length for the

proposed configuration and also stands for the fitness

function of the solution and is used to rank its quality.

Local search mechanism, Ls, consists of changing a limited

(k\N) part of this configuration in order to reduce the

global distance. For K = 2, this consists in permuting Vx,

and Vy positions in the solution configurations so that a

new solution is generated TSPu-Ls = {Vy, Vx, Vi, …,VN}.

Processing consists of building several vertices, which are

ranked in order to elect the best solution and to evolve

toward a better one. The number of vertices is equal to the

number of the meta-heuristic agents or instances.

3 Proposed bi-heuristic approaches

3.1 General architecture overview

Heuristic methods are known to be suitable in solving NP-

hard problems with more or less balanced performance/

quality ratio; essentially due to their capacity to return a

possible solution in a relative acceptable time. Meanwhile,

heuristic methods performances may suffer from the

impact of its parameters on the quality of the results. The

proposed bi-heuristic approaches are based on a couple of

heuristics, as in Fig. 3, where the first manages the prob-

lem; it is called problem-solving heuristic, PSH.

The second heuristic acts to reduce dependencies of

PSH to its parameters by an iterative parameter fitting

process, it is called the supervising heuristic, S–H. For

combinatorial and discrete optimization problems, discrete

heuristics are more suitable to serve as problem-solving

heuristics PHS. When the discrete heuristic got continuous

parameters, self-adapting those parameters should be

managed by a continuous supervising heuristic, S–H, such

as PSO, FPA, FA or bat algorithm, BA.

The supervising heuristic, S–H, may have a direct

feedback on solution quality by gathering fitness of the

PSH to decide where to fix to keep changing the PSH

parameters. A local search strategy is also added to avoid

PSH to be trapped in local optimal solutions.

Such an architecture may be a generic solution for

(Yang et al. 2013) investigations where authors called this

process the hyperoptimization and pointed that meta-

heuristics and bio-inspired algorithms performances

depend on the tuning of their parameters; authors also

agreed that a nice tuning leads the algorithm to better

performances.

In this paper, the investigations concern a hybridization

schema where ACO is the problem-solving heuristic, PSH,

and where FPA, social PSO, cognitive PSO and chaotic

Fig. 2 Illustration of the 2-opt

local search mechanism,

a Possible tour, b Obtained

configuration after removing

two edges, c New tour obtained

after new edges connections

with a new configuration

3780 N. Rokbani et al.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



PSO are investigated at meta-level as supervising

heuristics.

3.2 Ant supervised by FPA with local search

This paragraph will focus on the ant supervised by flower

pollination algorithm, AS-FPA; the schema is used for the

four hybridizations of this paper. Since the problem to

solve is the TSP, the ACO is selected as a PSH while, FPA,

flower pollination algorithm is set as supervising heuristic

S–H, and the 2-opt is used for local search, Ls, adjust

parameters. During the initialization, we have to declare

the meta-heuristic parameters, as in Fig. 4 flowchart. FPA

helps ACO to find his optimized parameters, and the local

search algorithm helps ACO to optimize the best tour

obtained. The FPA pollen positions are assumed to ACO

parameters (a, b and q). Pollen fitnesses are confused with

TSP tour length returned by ACO. The local search, here

2-opt, is used to avoid ACO local optimums. The pro-

cessing stop condition is observed when a tour length\
BKS (best known solution) is obtained or when the max-

imum iteration is achieved. The PFA processing steps are

detailed in Fig. 4a:

4 Experimental investigations

4.1 Experimental protocol

Simulations are used to evaluate algorithms’ performance

in terms of algorithms convergence speed, solution quality

and impact of ACO parameters on obtained solutions.

Experimental results are obtained using Matlab software,

R2015a. Matlab software runs on desktop machine with

ACER Intel Core i7, 8 GB RAM size. For our experimental

contribution, all test benches are used from TSPLib

(Reinelt 1991). Selected test benches for the statistical

analysis are eil51, berlin52, st70, st76, rat99, kroA100,

eil101, ch150, kroA200. We place all tests and algorithms

codes in the same machine folder. The fitness function is

minimizing the total distance between N cities as Equa-

tion X (7). For each test bench, we have to determinate the

results error (err.), average solution (avg.) and the standard

deviation (SD). To compare to proposal to similar tech-

niques, the results error is computed. The best global

solution is a solution with the minimum error [min(err.)],

see Eq. (15) where avg is the average solution, BKS stands

for the best known solution.

Err ¼ Avg� BKSð Þ � BKSð Þ � 100 ð15Þ

In addition, we plot the evolution of fitness function in

terms of iterations to see the convergence. To evaluate the

impact of algorithm parameters on the results, the average,

standard deviation, variance and error are used. The mean,

the standard deviation and the variance are computed using

Matlab tools (Mahi et al. 2015).

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

xt � lð Þ2
 !vuut ð16Þ

The standard deviation SD is calculated using the

Matlab predefined function ‘‘std,’’ where T is iterations

number, xt is the best position in each iteration t and l is

the mean, see Eq. (16). The impact of ACO parameters

(a; b; qÞ is estimated using the means of all implemented

test benches. Algorithms evaluation process is based on

two aspects, the fitness function which is the minimum of

total distance achieved in passed tour and the time needed

to converge. The best solution found was visualized using a

Matlab Cartesian frame. The firefly algorithm was executed

50 times with 10 fireflies when the ACO runs for ant swarm

size equal to city number. The flower pollination algorithm

population size is 10, and the switching probability is 0.8.

FPA is running 100 times; the same configuration was

applied to PSO variants used in this paper.

4.2 Results and discussions

Discussion concerns essentially four hybridization scenar-

ios: ant supervised by FPA-LS, ant supervised by social-

PSO-Ls, ant supervised by cognitive-PSO-Ls and ant

supervised by chaotic-PSO-Ls.

Feedback 

PSH Fitness ACO Parameters 

Optimized Tours 

Problem to Solve

Local Search

ProblemSolvingheuristic

Supervising- Heuristic

Distances 

Fig. 3 Bi-heuristic local search architecture overview
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4.2.1 Comparative results in terms of tour length

For the proposed hybridizations algorithms AS-FPA-Ls,

AS-SoPSO-Ls, AS-CoPSO-Ls and AS-CPSO-Ls, a con-

verging behavior is observed for the set of selected TSP

test benches. For this experimentation, FPA maximum

iteration was set to 50, and ACO maximum iteration is

equal to 50 making to total iterative processing count of

2500 iterations, meanwhile, the algorithm gives the best

solution in less than 250 iterations.

Concerning the ant supervised by chaotic-PSO with

local search, AS-CPSO-Ls, Figure from 5.1 to 5.8 shows

respective tour representations; in Fig. 5.1, the eil51 solu-

tion is presented showing that the proposal is able to

converge to fair and acceptable solutions, the tour length

obtained is about 452. Figure 5.2 illustrates berlin52 best

tour which is 7642 which represents the BKS of the

problem, while Fig. 5.3 is st70 with a route length of 725.

Eil76 shortest tour is presented using Fig. 5.4, it is equal to

556 while the average is about 581. The shortest tour

obtained by rat99 using AS-CPSO-Ls is 1282, the tour

appears in Fig. 5.5. The best tour obtained for kroA100 is

21,821, see Fig. 5.6. Figure 5.7 is presenting eil101 best

tour which is equal to 684. Kora 200 shortest tour is

31,774, Fig. 5.8.

Tables 5 and 6 show the average solutions, as well as the

errors obtained with the proposed hybridizations. For AS-

FPA-Ls, the best average results were observed for ber-

lin52 TSP instance which error was about 0.63%.

Acceptable results were observed for all remaining test

benches with errors ranging from 0.63 to 6.6%. Best

obtained solutions for each TSP test instance are illustrated

in Fig. 6. Figure 6a shows the eil51 tour path, Fig. 6b

illustrates the berlin52 tour, Fig. 6c shows the st70 TSP

solution, while Fig. 6d demonstrates the eil 76 TSP

instance. TSP instances rat99, eil101, Kroa100 and Ch 150

appear, respectively, in Fig. 6e–h.

For the ant supervised by social PSO-Ls, So-ASPSO-Ls,

the social behavior of PSO was obtained by setting the

cognitive factor c1 = 0.345, while the social parameter was

about c2 = 3.45, making the social moderation factor 10

times more important than the cognitive factor. Obtained

results shown in Tables 5 and 6 demonstrate that the pro-

posed hybridization achieved the BKS for the following

TSP instances: eil51, berlin52, st70, rat99, KorA100. With

errors ranging from 0.014% for the Berlin52–3.05%

obtained with eil101.

The cognitive ant supervised by PSO, Co-ASPSO-Ls, is

the opposite configuration compared to the So-ASPSO-Ls:

c1 = 3.45 and c2 = 0.345. For these PSO variants, the

inertia weight was set to w = 0.8. Co-AS-PSO-Ls achieved

fair solutions. The proposed hybridization achieved the

BKS for the following TSP instances: eil51, berlin52, st70,

rat99, KorA100, Ch150 and eil101, errors for these TSP

instances ranged from 0.29% for berlin52–0.87 for

ch150.The worst error obtained with this hybridization was

2.06% for rat99.

4.2.2 ACO self-adapted parameters

The simulated hybridization schema including AS-FPA-Ls,

So-ASPSO-LS, Co-ASPSO-LS and AS-chaotic-PSO-Ls

showed a capacity to retrieve stable ACO parameters

allowing the proposed methods to achieve fair solutions of

the TSP instances of this study.

ACO optimized parameters (a; b; q) allowing to achieve

best results for AS-FPA-Ls appear in Tables 1, 2, 3, 4.

Table 1 reports the best self-tuned parameters for the

studied TSP instances with AS-FPA-LS; ACO parameters

were, respectively, in the following intervals:

Step1 : 1.1 Initialization of the Supervising heuristic (FPA)
Population size, maximum iterations number, fitness function, xi = ( )

1.2 Initialization of Problem Solving Heuristic (ACO)
Population size, maximum iterations number, fitness function,  ( )

1.3 Initialization of the Problem Instance & best known solution BKS. 
Step2: FPA processing  

2.1 Lunch SH Processing (FPA processing) 
2.2 Evaluate pollen fitnesses
2.3Update pollen using boitic pollination

2.4 Update Pollen using abiotic pollination

Step3: Set ACO (parameters) = Pollen_Position(s)
Step4: Lunch ACO() instances
Step5: For each ACO instance 

5.1 Lunch Local search()
5.2 Evaluate solution: Compute Tour length()

Step 6: if (not Stop condition )
6.1 Update Pollen_Fitness()
6.2 Loop to (2.4)

Step 7: if (Stop condition)
7.1 Return (TSP_Tour)
7.2 Return (Pollen_position)

(a)

Fig. 4 FPA pseudocode and

ASFPA-Ls flowchart
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a ¼ 0:5; 3:48ð Þ; b 1:44; 5:89ð Þ; and q ¼ 0:07; 0:7ð Þ;

ACO optimized parameters (a; b; q) allowing achieving

best results for AS-chaotic-PSO-Ls appear in Table 2,

ACO parameters were, respectively, in the following

intervals:

a ¼ 0:68; 2:64ð Þ; b 1:86; 7:69ð Þ; andq ¼ 0:18; 0:67ð Þ;

ACO optimized parameters (a; b; q) allowing achieving

best results for So- ASPSO-Ls appear in Table 3, ACO

parameters were, respectively, in the following intervals:

Return the optimum Tour with the optimized ACO parameters  

Maximum
Iteration is reached or solution <=

best known solution

Execute 2Opt algorithm to improve ant best path

Yes

Pollen Positions  Biotic update
Pollen position  Abiotic update

Set ACO parameters ( ) =  Pollen_Position

Execute ACO Algorithm  

Evaluate pollen (fitnesses)

Start

Initialization of the Supervising heuristic (FPA) 
Initialization of problem solving heuristic (ACO)

Lunch FPA Processing()

No

(b)

Fig. 4 continued
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a ¼ 0:5; 1:98ð Þ; b 3:3; 4:98ð Þ; andq ¼ 0:04; 0:44ð Þ;

ACO optimized parameters (a; b; q) allowing achieving

best results for Co-ASPSO-Ls appear in Table 4, ACO

parameters were, respectively, in the following intervals:

a ¼ 0:5; 2:0ð Þ; b 2:68; 5:1ð Þ; andq ¼ 0:08; 0:51ð Þ;

Globally the returned parameters of the PSO variants for

a given TSP instance are close, for example if we consider

the eli76 TSP instance, AS-chaotic PSO-Ls parameters

were (a; b; q) = (1.59, 4.22, 0.37), while for So-ASPSO-Ls,

parameters used to be (a; b; q) = (1.51, 4.25, 0.41). The

same parameters obtained with Co-ASPSO-Ls are 1.48,

4.67, 0.53.
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51 Nodes Tour Path of  eil51 Optimum path = 438

Figure 5.1 eil51Shortest Tour 
obtained by ACO-CPSO-2Opt 
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Figure 5.2 berlin52 Shortest 
Tour obtained by ACO-CPSO-2Opt 
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Figure 5.4 eil76 Shortest Tour 
obtained by ACO-CPSO-2Opt 
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Fig. 5 Shortest tours obtained by ACO-CPSO-2-opt
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(a) Eil51best solution using ASFPA-
Local search

(b) berlin52 test bench solution using ASFPA-
Local search

(d) eil76 test bench best solution using ASFPA-
Local search

(c) st70 test bench best solution using ASFPA-
Local search

(f) eil101 test bench best solution using ASFPA-
Local search

(e) rat99 test bench best solution using ASFPA-
Local search

(g) kroA100 test bench best solution using ASFPA
-

Local search
(h) ch150 test bench best solution using ASFPA-

Local search

Fig. 6 ASFPA-Ls best test

benches solutions
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For AS-FPA-Ls hybridization and when observed for

the same TSP instance, Eil76 best ACO parameters are

1.62, 1.90, 0.13, where only b parameter is out of range

when compared to other three hybridization schemas.

The evolution of fitness function is illustrated in Fig. 7

for FPA, over KroA200, CH150 and Berlin52 TSP

instances where the hybrid approach proposed in this paper

show an evident early convergence behavior to values

close to BKS of the concerned test benches when compared

to standard ACO solver for TSP, this is more visible when

results are compared to artificial bee colony algorithm,

ABC. Figure 8 illustrates how the proposed hybridizations

are performing ACO parameters’, a, b and q, adjustments

with a converging behavior appearing from iteration 30 and

following the same dynamic of the solutions’ evolutions

that appear in Fig. 7.

4.2.3 Execution times comparisons

Time comparisons are based on execution time, not run

time, an executable file is generated using Matlab resour-

ces, and then the executable file is executed on a Microsoft

10 operating system, an i7 processor with 8GB of RAM

memory.

To compare time efficiency of the proposed methods, all

meta-heuristics were compared to the (Abdulqader 2016)

who hybridized the ACO algorithm with simulating

annealing heuristic. The stop condition was fixed to 100

iterations or to results less or equal to BKS, best known

solution. The time was measured using the tic-toc method

of Matlab. In terms of time execution, Table 5 shows that

PSO variants, Co-ASPSO-Ls and So-ASPSO-Ls and also

AS-chaotic-PSO-Ls, are faster than ASFPA-Ls; the results

are close to (Abdulqader 2016) with a relatively better time

observed for Berlin52 for proposed methods. A relative

faster processing is observed also for KroA200 when using

So-ASPSO-LS.

Computing times appearing in Table 6 are made for the

same configuration of the meta-heuristics, the number of

particles was set to 10 then to 20, and the maximum

Table 1 Optimized ACO parameters for each test bench (AS-FPA-

Ls)

Problems a b q

eil51 1.560 1.447 0 .141

berlin52 3.483 5.898 0.701

st70 1.722 4.623 0.072

eil76 1.681 1.905 0.138

rat99 1.806 2.262 0.129

eil101 0.504 4.753 0.073

kroA100 1.264 2.541 0.068

ch150 1.727 4.091 0.348

kroA200 1.560 1.447 0.141

Table 2 Optimized ACO parameters for each test bench (AS-chaotic-

PSO-Ls)

Problems a b q

eil51 0.935 3.993 0.284

berlin52 1.462 5.000 0.510

st70 2.649 7.699 0.672

eil76 1.599 4.228 0.374

rat99 0.680 4.362 0.185

eil101 1.433 4.146 0.294

kroA100 1.549 4.944 0.034

ch150 0.868 1.862 0.349

kroA200 0.935 3.993 0.284

Table 3 Optimized ACO parameters for each test bench (So-AS-

PSO-Ls)

Problems a b q

eil51 0.977 4.983 0.216

berlin52 0.532 3.213 0.274

st70 1.983 3.479 0.026

eeil76 1.512 4.256 0.414

rat99 1.806 4.311 0.442

eil101 1.796 4.753 0.224

kroA100 1.654 3.307 0.326

ch150 0.949 3.829 0.218

kroA200 0.500 4.679 0.041

Table 4 Optimized ACO parameters for each test bench (Co-AS-

PSO-Ls)

Problems a b q

eil51 0.921 5.100 0.200

berlin52 0.552 3.424 0.193

st70 2.003 3.671 0.038

eil76 1.489 4.678 0.534

rat99 1.856 5.004 0.514

eil101 1.897 4.981 0.312

kroA100 1.731 4.215 0.343

ch150 0.845 2.687 0.298

kroA200 0.812 4.012 0.088
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iteration number to 100. Note also that the times of Table 5

are the average time obtained for 10 tests. The most

effective hybridization in terms of time is the SAS-PSO-Ls,

followed by AS-chaotic-PSO-Ls which returned results in

about 150 ms, for a swarm size of 10 particles. Time

processing almost doubled when the number of particles is

set to 20.

4.2.4 Nonparametric statistical analysis

4.2.4.1 Nonparametric statistical toward classical ACO and
ABC The Wilcoxon test was implemented in order to

evaluate the relative performances of the proposed

hybridization with nominal ACO and ABC methods when

applied to the same TSP instances. Proposed algorithms

were also compared with each other, and the results are

presented in Table 7. This test is based on an experimental

statistical analysis over eight TSP test benches, with a

series of 30 epochs of average tour costs for each method

and for each set.

The Wilcoxon ranks, (Derrac et al. 2011), allowed to

measure results variants of the proposed methods in com-

parison with ACO and artificial bee colony algorithm,

ABC. When compared to ACO and ABC, the four pro-

posed methods returned a p value less than 0.05, which

means that the median of tested distributions is different

from the median of the ACO and ABC distributions for all

tested sets. The results of the table showed that FPA-ACO-

bFig. 7 Fitness function convergence for KroA200 (a), Ch150 (b) and
Berlin52(c)

Fig. 8 ACO parameters

evolution for (berlin52) with

ASFPA-Ls

Table 5 Comparative execution

time
TSP instance ASFPA-Ls So-ASPSO-Ls Co-ASPSO-Ls Chaotic (Abdulqader 2016)

Eil51 0.08 0.04 0.05 0.07 0.00

Berlin52 0.16 0.15 0.14 0.15 0.06

St70 – – – – –

Eil76 0.01 0.01 0.01 0.02 0.01

Rat99 0.03 0.02 0.02 0.03 –

Eil101 0.04 0.02 0.02 0.03 0.02

KroA100 0.03 0.01 0.01 0.02 0.01

Ch150 0.02 0.02 0.03 0.06 0.03

KroA200 0.22 0.18 0.21 0.31 0.20

Table 6 Impact of the swarm size on execution time in (m) seconds

for Berlin 52

Ant Iteration Num = 50; Iteration

heuristic1 = 100

Swarm size = 10 Swarm size = 20

AS-chaoticPSO-Ls 151.488 312.563

ASFPA-Ls 163.993 327.060

So-ASPSO-Ls 155.785 312.425

Co-ASPSO-Ls 149.785 306.554
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Table 7 Nonparametric

statistical analysis based on

Wilcoxon signed rank test

Test bench Compared methods Solution evaluation

KroA100 Method 1 Method 2 R� Rþ q Best method

Chaotic-ASPSO-Ls ACO 381 84 4.98e-04 Ch-PSO-ACO-LS

Chaotic-ASPSO-Ls ABC 465 0 3.01e-11 Ch-PSO-ACO-LS

So-ASPSO-Ls ACO 465 0 1.77e-10 So-ASPSO-Ls

So-ASPSO-Ls ABC 465 0 3.01e-11 So-ASPSO-Ls

FPA-ACO-Ls ACO 444 21 4.44e-07 FPA-ACO-Ls

FPA-ACO-LS ABC 465 0 3.01e-11 FPA-ACO-Ls

Co-ASPSO-Ls ACO 465 0 3.01e-11 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 465 0 3.02e-11 Co-ASPSO-Ls

KorA200 FPA-ACO-Ls ACO 446 19 4.44e-07 FPA-ACO-Ls

FPA-ACO-Ls ABC 449 16 1.45e-06 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 337 128 0.0281 Ch-PSO-ACO-LS

Chaotic-ASPSO-Ls ABC 342 123 0.0437 Ch-PSO-ACO-LS

Co-ASPSO-Ls ACO 443 22 1.60e-06 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 434 31 5.86e-06 Co-ASPSO-Ls

So-ASPSO-Ls ACO 430 35 1.28e-06 So-ASPSO-Ls

So-ASPSO-Ls ABC 432 33 8.29e-06 So-ASPSO-Ls

Ch150

Eil101

FPA-ACO-Ls ACO 265 200 0.04290 FPA-ACO-Ls

FPA-ACO-Ls ABC 462 3 1.69e-09 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 225 240 0.0494 ACO

Chaotic-ASPSO-Ls ABC 451 14 6.53e-08 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 460 5 1.01e-08 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 465 0 3.02e-11 Co-ASPSO-Ls

So-ASPSO-Ls ACO 439 26 3.01e-07 So-ASPSO-Ls

So-ASPSO-Ls ABC 465 0 4.50e-11 So-ASPSO-Ls

FPA-ACO-Ls ACO 465 0 5,49e-11 FPA-ACO-Ls

FPA-ACO-Ls ABC 465 0 3,02e-11 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 410 55 3.36e-04 Chaotic-ASPSO-Ls

Chaotic-ASPSO-Ls ABC 465 0 3,01e-11 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 463 2 4,08e-8 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 465 0 3,02e-11 Co-ASPSO-Ls

So-ASPSO-Ls ACO 465 0 3,01e-11 So-ASPSO-Ls

So-ASPSO-Ls ABC 465 0 3,01e-11 So-ASPSO-Ls

Eil76 FPA-ACO-Ls ACO 136 329 0.0315 ACO

FPA-ACO-Ls ABC 0 465 3.01e-11 ABC

Chaotic-ASPSO-Ls ACO 46 419 3.36e-04 ACO

Chaotic-ASPSO-Ls ABC 465 0 3.01e-11 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 465 0 3,01e-11 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 465 0 3,01e-11 Co-ASPSO-Ls

So-ASPSO-Ls ACO 465 0 3,01e-11 So-ASPSO-Ls

So-ASPSO-Ls ABC 465 0 3,01e-11 So-ASPSO-Ls

Eil70 FPA-ACO-Ls ACO 210 0 1.06e-07 FPA-ACO-Ls

FPA-ACO-Ls ABC 210 0 6.79e-08 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 30 180 0.0084 Chaotic-ASPSO-Ls

Chaotic-ASPSO-Ls ABC 210 0 6.79e-08 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 210 0 9.17e-08 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 210 0 6.79e-08 Co-ASPSO-Ls

So-ASPSO-Ls ACO 210 0 6.79e-08 So-ASPSO-Ls

So-ASPSO-Ls ABC 210 0 6.79e-08 So-ASPSO-Ls
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Ls, So-ASPSO-Ls, Co-ASPSO-Ls and chaotic-ASPSO-Ls

presented in this paper are better than nominal ABC for

ST70, Berlin52, Eil51, Eil101 KroA100, Ch150 and

KroA200 TSP instances, while ABC is better only for

Eil76. Results observed in comparison with ACO are more

moderate since it was observed that the chaotic-ASPSO-Ls

is worst than nominal ACO for Ch150 TSP instance. The

FPA-ACO-Ls and chaotic-ASPSO-Ls are worst than ACO

for Eil76.

4.2.4.2 Nonparametric statistical analysis of the proposed
methods to each others This paragraph focuses on some

analysis based on the Wilcoxon rank sum test when applied

to compare the four proposed methods to each other’s

based on the following TSP data sets (Tables 8, 9, 10, 11):

KroA100, KroA200, Eil101 and Ch150 which are all TSP

instances with more than 100 cities, for all tests, the p value

was less than 0.05, analysis is made on the basis of R� and

Rþparameters. For KroA100, the Wilcoxon test of AS-

FPA-Ls to other three propositions is resumed in Table 8,

allowing see that FPA is worse than the So-ASPSO-Ls and

the cognitive-PSO-ACO-Ls while better than the chaotic-

ASPSO-Ls for this TSP instance. For KroA200, antagonist

results were observed and give a relative advantage for the

AS-FPA-Ls in regards other proposed methods in the paper

Table 7 continued
Test bench Compared methods Solution evaluation

Berlin52 FPA-ACO-Ls ACO 207 3 1.04e-06 FPA-ACO-Ls

FPA-ACO-Ls ABC 210 0 6.79e-08 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 210 0 1.04e-06 Chaotic-ASPSO-Ls

Chaotic-ASPSO-Ls ABC 210 0 6.78e-08 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 168 42 0.0256 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 210 0 6.79e-08 Co-ASPSO-Ls

So-ASPSO-Ls ACO 182 28 0.0010 So-ASPSO-Ls

So-ASPSO-Ls ABC 210 0 6.79e-08 So-ASPSO-Ls

Eil51 FPA-ACO-Ls ACO 465 0 3.54e-11 FPA-ACO-Ls

FPA-ACO-Ls ABC 455 10 4.61e-6 FPA-ACO-Ls

Chaotic-ASPSO-Ls ACO 465 0 3.01e-11 Chaotic-ASPSO-Ls

Chaotic-ASPSO-Ls ABC 465 0 3.01e-11 Chaotic-ASPSO-Ls

Co-ASPSO-Ls ACO 465 0 3.01e-11 Co-ASPSO-Ls

Co-ASPSO-Ls ABC 465 0 3.01e-11 Co-ASPSO-Ls

So-ASPSO-Ls ACO 454 11 7.20e-8 So-ASPSO-Ls

So-ASPSO-Ls ABC 445 20 2.58 e-6 So-ASPSO-Ls

Table 8 Wilcoxon analysis of FPA to other proposed methods for

KroA100

Compared methods Solution evaluation

Algorithm 1 Algorithm 2 R� Rþ q

FPA-ACO-Ls So-ASPSO-Ls 118 347 0.0138

FPA-ACO-Ls Co-ASPSO-Ls 15 450 7.08e-08

FPA-ACO-Ls Chaotic-ASPSO-Ls 270 195 0.03042

Table 9 Wilcoxon analysis of FPA to other proposed methods for

KroA200

Compared methods Solution evaluation

Algorithm 1 Algorithm 2 R� Rþ q

FPA-ACO-Ls So-ASPSO-Ls 306 159 0.0018

FPA-ACO-Ls Co-ASPSO-Ls 288 177 0.0022

FPA-ACO-Ls Chaotic-ASPSO-Ls 450 15 1.3594e-07

Table 10 Wilcoxon analysis of FPA to other proposed methods for

Ch150

Compared methods Solution evaluation

Algorithm 1 Algorithm 2 R� Rþ q

FPA-ACO-Ls So-ASPSO-Ls 43 422 3.15e-05

FPA-ACO-Ls Co-ASPSO-Ls 24 441 8.83e-07

FPA-ACO-Ls Chaotic-ASPSO-Ls 266 199 0.0206

Table 11 Wilcoxon analysis of FPA to other proposed methods for

Eil101

Compared methods Solution evaluation

Algorithm 1 Algorithm 2 R� Rþ q

FPA-ACO-Ls So-ASPSO-Ls 115 350 0,0251

FPA-ACO-Ls Co-ASPSO-Ls 43 422 7,1988e-05

FPA-ACO-Ls Chaotic-ASPSO-Ls 369 96 0,0080
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Table 12 Results and comparisons of the proposed algorithms with state-of-the-art techniques (BKS: best known solution)

Authors Problem

BKS

eil51

426

berlin52

7542

st70

675

eil76

538

rat99

1211

eil101

629

kroA100

21,282

ch150

6528

kroA200

29,368

ACO–2-opt (Jun-man and Yi

2012)

Avg 439.25 7556.58 – – – 672.37 23,441.80 – –

SD – – – – – – – – –

Error

(%)

3.11 0.19 – – – 6.90 10.15 – –

Hybrid ACO (Junqiang and

Aijia 2012)

Avg 431.20 7560.54 – – 1241.33 – – – –

SD 2.00 67.48 – – 9.60 – – – –

Error

(%)

1.22 0.23 – – 2.5 – – – –

GA-ant system (Dong et al.

2012)

Avg – 7634.00 – 542.00 – – 21,437.00 – 29,946.00

SD – – – – – – – – –

Error

(%)

– 1.22 – 0.74 – – 0.73 – 1.97

ACO-Tagushi method (Peker

et al. 2013)

Avg 435.40 7635.40 – 565.50 – 655.00 21,567.10 – –

SD – – – – – – – – –

Error

(%)

2.21 1.24 – 5.11 – 4.13 1.34 – –

ACO-ABC (Gündüz et al.

2015)

Avg 443.39 7544.37 700.58 557.98 – 683.39 22,435.31 6677.12 –

SD 5.25 0.00 7.51 4.10 – 6.56 231.34 19.30 –

Error

(%)

4.08 0.03 3.79 3.71 – 8.65 5.42 2.28 –

PSO–ACO–3-opt (a, b)
(Mahia et al. 2015)

Avg 426.45 7543.20 678.20 538.30 1227.40 632.70 21,445.10 6563.95 29,646.05

SD 0.61 2.37 1.47 0.47 1.98 2.12 78.24 27.58 114.71

Error

(%)

0.11 0.02 0.47 0.06 1.35 0.59 0.77 0.55 0.95

AS-PSO 2-opt (Kefi et al.

2016a, b)

Avg 428 7542 678 541.20 1236 632 21,457 6560 29,837

SD 9.97 202.62 15.92 12.16 31.74 12.29 391.85 171.90 359.28

Error

(%)

0.23 0.001 0.44 0.55 2.08 0.47 0.82 0.49 1.60

SAS-PSO-Ls (Rokbani et al.

2019a, b)

Avg 426.53 7542.42 675.54 543.17 – 645.53 21,305.78 6606.26 29,924.31

SD 9.64 206.14 20.68 13.14 – 12.13 674,46 176.58 631.58

Error

(%)

0.05 0.05 0.05 0.92937 – 2.5437 0,10,807 1.1949 1.8932

ASFA-Ls (Rokbani et al.

2019a, b)

Avg 428.08 7542.33 675.11 541.03 1213.26 639.19 21,282,09 6571.08 29,532.02

SD 8.35 – 15.19 11.14 29.14 12.17 437.83 159.15 628.90

Error

(%)

0.6291 0.0 0.0 0.55762 0.16515 1.5898 0 0.6587 0.55843

PACO-3-opt (Gülcü et al.

2018)

Avg 426.35 7542.00 677.85 539.85 1217.10 630.55 21,326.80 – 29,644.50

SD 0.49 0 0.99 1.09 4.01 2.63 3.72 – 53.43

Error

(%)

0.08 0 0.42 0.3 0.50 0.25 0.21 – 0.94

ACO (Gülcü et al. 2015) Avg 457.86 7659.31 709.16 561.98 – 693.42 22,880.12 6528.00 –

SD 4.07 38.7 8.27 3.5 – 6.8 235.18 6.56 –

Error

(%)

– – – – – – – – –

ABC (Gülcü et al. 2015) Avg 590.49 10,390.26 1230.46 931.44 – 1315.95 53,840.03 6702.87 –

SD 15.79 38.7 41.79 24.86 – 35.28 2198.36 20.73 –

Error

(%)

– – – – – – – – –

(Abdulqader 2016) Avg 426.00 7542.00 – 578.00 – 629.00 21,282.00 6528.00 29,368.00

SD 0.00 0.00 – 0.00 – 0.00 0.00 0.00 0.00
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as it can be visible in Table 9.The Wilcoxon test for the

Ch150 TSP instance shows that the social-PSO-ACO-Ls

and cognitive-PSO-Ls are better than FPA-ACO-Ls while

FPA-ACO-Ls is better than the chaotic-ASPSO-Ls for this

data set. Table 12 discusses about the comparative analysis

of proposed work with existing works.

5 Conclusions and perspectives

This paper introduced a generalized frame of bi-heuristic

self-adaptive schema for NP-hard combinatorial optimiza-

tion problem such as TSP. The proposal includes ASFPA-

Ls, So-AS-PSO-Ls and Co-ASPSO-Ls and also ant

supervised by chaotic PSO, AS-chaotic-PSO-Ls. Proposed

hybridizations attended fair solutions for the TSP problems

instances used in the experimental investigations including

eil 51, berlin52, St70, eil76, rat 99, eil101, KroA100,

Ch150 and kroA200. A good balance performance/time is

found with the social ant supervised by PSO with local

search, So-ASPSO-Ls. The cognitive ant supervised by

PSO with local search, Co-ASPSO-Ls comes in the second

position in terms of time effectiveness with close perfor-

mances followed by AS-chaotic-PSO-Ls and finally AS-

FPA-Ls.

PSO-based hybridizations approaches returned low rate

errors or BKS for used test benches: berlin52, st70, eil76,

rat99, kroA100 and kroA200. ASFPA-Ls gives high qual-

ity solution for berlin52 and eil101. In terms of parameters,

all propositions showed capacities of self-adaptive

behaviors which strengthen the idea of a heuristic schema

less depending on parameters variations. The real-time

processing constraints of the hybridization schema should

also be envisaged for a prospective online implementation

is manufacturing and robotics solutions, essentially for path

planning and routing systems when the time constraints are

about (200 ms) for Berlin 52 related problem. Future

investigations will include also the prospective of the

proposal to recent heuristics and bio-inspired techniques

such as hybrid crow search algorithm (Hassanien et al.

2018) and its chaotic version of Rizk-Allah et al. (2018).
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