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Abstract
The swallow swarm optimization (SS) is a challenging method of optimization, which has a quicker convergence speed,

not getting caught in the local extreme points. However, the SS suffers from a few shortcomings—(1) the movement speed
of particles is not controlled suitably during the search due to the requirement of an inertia weight and (2) the less flexibility

of variables does not permit to maintain a balance between the local and the global searches. To solve these problems, a

new Levy swallow swarm optimization (SSLY) algorithm with the exploitation capability is proposed. This article also
provides an optimal design methodology for the low-pass filter using the suggested SSLY technique. A new objective
function is introduced to achieve the maximally flat frequency response, which is another important contribution to the

field. The firefly algorithm (FA), the sine cosine algorithm (SCA) and the standard global optimizers—real coded genetic
algorithm (GA), conventional particle swarm optimization (PSO), cuckoo search (CS) and SS, are considered for a

comparison. The proposed SSLY outperforms the FA, SCA, GA, PSO, CS and SS algorithms. Results authenticate

suitability of the proposed algorithm for solving the filter design problems in the FIR domain.

Keywords FIR filter design ! Evolutionary techniques ! Levy swallow swarm algorithm

1 Introduction

Nowadays, digital filters are found to be an integral part of

the DSP system. Filters are classified into two classes: FIR
and IIR which are depended on the form of filter equations

and the structure of the implementation (Parks and Burrus

1987; Parks and McClellan 1972). The window and fre-
quency sampling methods are the most popular methods of

the FIR filter design. The amount of allowable ripples in

the pass-band, stop-band, stop-band attenuation and tran-
sition width decides different design procedures. FIR filters

offer better stability and linear phase under certain condi-
tions. Realization of the FIR filters using a recursive for-

mula is also possible. Implementation of a finite word

length digital system is free from oscillations. It has greater
flexibility to control the nature of its magnitude response

(Karaboga and Cetinkaya 2011).

In the past, authors have proposed several methods for
the design of digital filters. Since the FIR filter offers

several advantages as compared to the IIR filter,

researchers consider the design of non-recursive filters as a
recent demanding optimization problem. Although tradi-

tional techniques like steepest descent, quasi-Newton and

gradient-based algorithms are used in an optimal design,
these methods are generally helpful for solving unimodal

problems of optimization. The optimization methods based

on the classical gradient techniques are not suitable for
optimizing the FIR filter, as they are highly susceptible to

the initial points, when the variable numbers along with the

size of the solution space are more. They also recurrently
approach to the local best possible solution, otherwise
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diverge. Another disadvantage is that the cost function

must be continuously differentiable. So, most useful evo-
lutionary methods are to be implemented in digital filter

design for enhanced control of parameters and superior

approximation to an ideal filter.
The FIR filter design technique is based on the multi-

modal minimization of the MSE (mean square error).

Different evolutionary algorithms are used by various
researchers in designing the FIR filters. The objective

function used for the optimal filter design precisely con-
trols the different parameters. This creates a nature of

vastly non-uniformity, nonlinearity, non-differentiability

and multi-modality. Such objective function optimization
tasks cannot be done by using the classical methods and

cannot touch the global minimum solution. Therefore, to

avoid the drawbacks of optimization by using the classical
methods, utilization of numerous optimization algorithms

having heuristic and meta-heuristic nature is done by sev-

eral researchers (Sarangi et al. 2014). The majority of these
algorithms depend on evolutionary techniques.

Different EAs have been deployed in the design of the

FIR filters competently by fulfilling the design require-
ments, which would otherwise unachievable. These include

simulated annealing (SA), GA (Mastorakis et al. 2003;

Ahmad and Andreas 2006), differential evolution (DE), bee
colony optimization (Karaboga 2009), collective animal

behavior (CAB), etc. The GA appears as a promising

candidate while considering the global optimization tech-
niques used for the design of a digital filter. It has the

ability of getting nearer global finest solution in the filter

design. RGA has a fine performance for locating hopeful
areas of the search space, but they are incompetent in

finding the global optimum while considering the speed of

convergence. To avoid problems related to GA (Ahmad
and Antoniou 2006), the orthogonal genetic algorithm has

been proposed. Adaptive differential evolution, differential

cultural algorithm, PSO, quantum PSO (Fang et al. 2006),
adaptive inertia weight PSO, craziness PSO (Mandal et al.

2011, 2012), gravitation search algorithm (Rashedi et al.

2011), seeker optimization, cat swarm optimization (Saha
et al. 2013), DE-PSO (Karaboga and Cetinkaya 2006) etc.,

are also used for the filter design. Mandal et al. (2012)

presented the filter design using the craziness PSO.
Aggarwal et al. (2016) discussed the design of the optimal

FIR filters based on the evolutionary methods.

In Mukherjee et al. (2017), the authors suggested the use
of the whale optimization algorithm for the design of type I

and type II filters having orders 20 and 30, respectively.

Similarly, the author Ji (2016) uses the ABC algorithm. In
Zhang and Kwan (2017), multi-objective teaching–learning

is deployed in designing the filters. The paper (Liang and

Kwan 2017) discusses the design of filters using the multi-
objective cuckoo search. The researcher in the paper (Chen

et al. 2018) designs the low-pass filter using the multi-

objective optimization algorithm. In Rana et al. (2016), the
authors utilize the constrained genetic algorithm for

designing the filters. The author in San-Jośe-Revuelta

(2018) suggested the use of a memetic algorithm for the
filter design. Similarly, Dhabal et al. (2016) presented the

design of filters using the cuckoo search. Kwan (2017) used

the interactive self-learning algorithm for designing the
low-pass filter. Recently, an adaptive cuckoo search tech-

nique has been used to obtain optimal coefficients for the
design of the high-pass and the band-stop FIR filters are

presented in (Sarangi et al. 2018). In Dwivedi et al. (2018),

a comprehensive review of the design of the FIR filters
using evolutionary methods is presented. The use of the

shuffle frog-leaping algorithm for the design of the FIR

filters is discussed in Jiménez-Galindo et al. (2019). A
hybrid ESA-DE method for the design of the FIR filters is

found in Deng et al. (2019). The authors Ravi et al. (2019)

presented a review on the design of the FIR filters using the
evolutionary methods. Dash et al. (2020) discussed the use

of DE-PSO algorithm for the FIR filter design. However,

these authors never used the mean rms error frequency
while proposing the objective functions, limiting the scope

of achieving the maximally flat frequency response.

The majority of the above-mentioned algorithms illus-
trate the troubles of setting up control parameters of an

algorithm, pre-convergence, saturation and recomputing

equal result at frequent intervals. For practical realization,
the optimal design parameters of the digital filter are very

much needed. However, the majority of the existing evo-

lutionary optimization techniques provide us the subopti-
mal design parameters only. These are the reasons why we

are motivated to innovate new swarm intelligence-based

meta-heuristic algorithm having (1) exploration; (2)
exploitation; and (3) adaptation capabilities to handle the

filter design problems efficiently, which is a worthwhile

subject of study. Recently, Neshat et al. (2012) proposed a
swarm-based optimization technique coined as the swallow

swarm optimization (SS). Swallow birds possess high

intelligence and fly collectively with a very high speed.
These birds produce different sounds in different situations

for a strong interaction between them. They eat insects,

which are collected by their wings on flying. Sometimes,
they also forage for the prey off branches and on the

ground. Interestingly, the SS possesses the high exploration

capability. On the other hand, cuckoo birds (Yang 2009;
Yang and Deb 2010) possess high exploitation ability. It is

remarkable to mention here that the exploration and the

exploitation are abilities to explore the total search space
and assemble to an improved result, respectively. Inte-

grating these two above features, most excellent solutions

can be acquired with a few function evaluations. This paper
made an attempt to supplement the exploitation feature of
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the CS in SS in order to enhance the exploitation ability. In

addition, the Levy flight is integrated in the proposed
algorithm, which assists us to reach the near (global)

optimum speedily. The aim of this idea is to acquire the

faster and a stable solution. So, the proposed algorithm
SSLY lands up with a quicker convergence than the CS and

the SS algorithms. So, optimal design parameters are found

with an appreciably less number of function evaluations. In
addition, the newly proposed objective function based on

the mean rms error frequency is more effective than the
existing objective functions used for the design of the FIR

filters by the above authors.

The organization of the paper is as follows: Sect. 1 is the
introduction. Section 2 describes the FIR filter design

methodology. A new objective function is also introduced

in this section. Section 3 explains the algorithm imple-
mentation steps. Section 4 presents the simulation results

and discussions. Conclusions are made in Sect. 5.

2 FIR filter design methodology

The unit sample response of the FIR filter is

HðzÞ ¼
XN

n¼0

hðnÞz%N n ¼ 0; 1. . .N ð1Þ

where h(n) is the unit sample response.
The difference equation can be represented by

yðnÞ ¼ hð0ÞxðnÞ þ hð1Þxðn% 1Þ þ ! ! ! þ hðNÞxðx% NÞ
ð2Þ

The length of h(n) is N ? 1 with the similar number of

coefficients and N is recognized as the order of the filter.

Here, the optimal values of h(n) are obtained using the
optimization techniques. In this paper, the GA, PSO, CS,

SS, FA, SCA and SSLY algorithms are used for the optimal

design of the low-pass filter. This work highlights the
design of an even order FIR filter. Note that here we

assume the positive even symmetry for h(n). The dimen-

sion of the problem on hand is reduced by a factor of 2 by
updating only half of the coefficients. The low-pass optimal

FIR filters are designed in this paper using GA, PSO, CS,

SS, FA, SCA and SSLY individually. Each optimization
algorithm attains the minimum error between the desired

frequency response and the actual frequency response by

deciding the optimal values of h(n) after a certain maxi-
mum number of iterations. The desired filter has a mag-

nitude one on the pass band and a magnitude zero on the

stop band. The individuals with lower fitness values rep-
resent the better the filter. The various filter parameters

such as the ripples in the pass band as well as in the stop

band and stop-band attenuation along with the transition

width are acting as the desirable constraints for a practical

filter design.
The well-known frequency response of the low-pass FIR

filter (to be designed) is,

HðwkÞ ¼
XN

n¼0

hðnÞe%jwkn ð3Þ

where wk ¼ ð2pk=NÞ
The objective function (first hand) proposed here for the

filter design is basically the error function. It is interesting

to mention here that the error in the pass band of the filter

frequency response is defined as,

E2
pðxÞ ¼

1

x1

Zx1

0

1% ĤðxÞ
! "2

WAðxÞdx: ð4Þ

where x1 signifies the buildup interval. Usually, the

buildup interval is reflected as the pass-band frequency xp.

WA(x) represents the weighting function. In this work, we

consider the unity value for WA(x). Note that ĤðxÞ rep-

resents the desired maximally flat frequency response.
Here, the measure for the pass-band error xe is given as,

xe ¼
Rx1

0 xEpðxÞdxRx1

0 EpðxÞdx
; for 0\x1 'xp ð5Þ

Note that xe is called the mean rms error frequency; xp

provide us the centered error frequency within the pass-

band frequencies 0\x1 'xp.

To make the ratio of the pass-band to the stop-band
ripple more adjustable, we propose an effective objective

function in this paper.

The objective function J is,

J ¼ max
x'xp

ðxe % dpÞ þ max
x(xs

ðxe % dsÞ ð6Þ

Note that dp, ds represent ripples in pass band and stop

band, respectively. Here, xp, xs denote pass-band and

stop-band normalized edge frequencies, respectively.

The objective function J described by Eq. (6) is the
proposed error fitness function. This function is minimized

by the proposed SSLY method.

3 Evolutionary computing techniques

In this section, six popular evolutionary computing tech-

niques, i.e., GA, PSO, CS, FA, SCA and SS, are discussed.

Further, the newly proposed Levy SS (SSLY) algorithm is
also presented.
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3.1 Genetic algorithm (GA)

Based on Darwin’s theory, GA is categorized as an opti-
mization technique depending on the philosophy of

genetics. It allows a population to have the individuals

under the specified selection rules to get an optimum of the
fitness values (i.e., minimizes/maximizes the cost func-

tion). There are four main characteristics found in the GA,

which shows the differences from the traditional opti-
mization algorithms. The natural selection principle was

explained by Charles Darwin. The genetic algorithm is the

most popular algorithm; it has been used for the decades
for the experimental purposes, getting the optimal solution

in the filter design applications.

GA is the stochastic search method that generally used
for finding an optimal solution in searching the evolu-

tionary function of an optimization problem. GA is a little

bit different from the classical optimization; and there are
several aspects of searching methods rather than focusing

on a single solution. It operates on a trial group of solutions

where they can operate a population of individuals in each
iteration. Each individual is indicated as the chromosome

representing as one solution to the problem. GA can be

applied to the solution for designing the problems provided
by a number of trial solutions, which can be coded in the

form of data structures such as a string (Ababneh and

Bataineh 2008). These evaluations of trial solutions can
have a relative basis of the possibility for getting the

solution. A comparison is done on the average fitness of the

whole population with the fitness function, which is
assigned to each trial solution, to provide a comparative

fitness value. Basically initialization, selection, mutation

and crossover are the four operators used in the GA.

3.2 Particle swarm optimization (PSO)

The PSO (Kennedy and Eberhart 1995) is a meta-heuristic

optimization algorithm, which depends on the population.

In the PSO, particles are initialized, which are updated
again and again to search for the optimum solution. The

particle velocity changes dynamically (within the search

space).

V ðkþ1Þ
i ¼ w ) Vk

i þ C1 ) rand1 ) pbestki % Ski
# $

þ C2 ) rand2
) gbestk % Ski
# $

ð7Þ

Skþ1
i ¼ Ski þ Vkþ1

i ð8Þ

where Vkþ1
i is the updated velocity, Vk

i is the velocity, w is

an inertia factor, Ski is the position of a particle ‘i’ in the kth

iteration, C1 and C2 are acceleration constants. pbest
k
i is the

previous best position of the ith particle in the kth iteration,

gbestk is the global best position of the entire population,

rand1; rand2 are two random numbers generated in the
range [0,1].

3.3 Cuckoo search (CS)

The cuckoo search is an algorithm of optimization pro-

posed by Yang and Deb (2009, 2010. It is encouraged by
reproduction of several cuckoo groups, i.e., lay eggs in

other host bird’s nest. Sometimes, the host bird may pre-

sume foreign eggs as its own and takes care. The hatching
probability of the cuckoo’s egg depends on a host bird’s

cleverness. But, if a host bird locates foreign eggs, it will

either throw or simply abandon its nest (Panda et al.
2013). The cuckoo search algorithm is presented below.

Xtþ1
i ¼ Xt

i þ a* Levy kð Þ; ð9Þ

where a[ 0 is the step size, the symbol * represents
entrywise multiplication. Levy kð Þ is taken from Levy flight

distribution (Yang and Deb 2009, 2010). More details on

Eq. (9) are found in Yang and Deb (2009, 2010).

3.4 Firefly algorithm (FA)

The firefly algorithm provides a concrete platform in the

computational intelligence (Yang 2009). The mathematical

model for the movement of fireflies is done using in the
optimization of several parameters in the world of engi-

neering. The differences in the intensity of light along with

the attractiveness between the fireflies are two of the
important parameters controlling the algorithm. The

brightness of fireflies is symbolized as Gw(x) which is

defined at a particular x with the intensity of light as the
reference as Gw0

Gw ¼ Gw0e
%cr2 ð10Þ

The relationship for the attractiveness of firefly having
the neighboring fireflies with b0 is attractive parameter at

r = 0 can be referred as

b ¼ b0e
%cr2 ð11Þ

In between any two fireflies, the relative distance can be
expressed as

rij ¼ xi % xj
%% %% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

k¼1

ðxi;k % xj;kÞ2
vuut ð12Þ

The above equation refers to the distance between the
two relative positions of the fireflies. Depending on this,

the movement of one firefly to another is given by

Psi ¼ Psi þ b0e
%cr2ijðPsj % PsiÞ þ a rand% 1

2

' (
ð13Þ
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where the value of b is positive for proper movement of

fireflies. The parameter a is adoptable in nature whose
values are taken arbitrarily in the process of program

execution within the range 0 to 1 for a variety of applica-

tions. The value of b0 is also 1 for most of the applications.

3.5 Sine cosine algorithm (SCA)

The SCA is recognized as a multi-agent-based optimization

algorithm using the concept of trigonometric sine and
cosine functions. This algorithm creates multiple prelimi-

nary random solutions and uses the concept of mathematics

to move toward the best possible solution. The initial
populations of random variables positioned in the solution

space are evaluated each time by utilizing the objective

function of the design problem. By the use of mathematical
expressions specified below, the positions of each variable

are updated to produce the final best value after the end of

the simulation experiment (Mirjalili 2016)

Xtþ1
i ¼ Xt

i þ r1 + sinðr2Þ + r3P
t
i % Xt

i

)) )) if r4\0:5 ð14Þ

Xtþ1
i ¼ Xt

i þ r1 + cosðr2Þ + r3P
t
i % Xt

i

)) )) if r4 ( 0:5 ð15Þ

The value of r1 can be selected by using the equation

r1 ¼ a% t
a

T

Note that t represents the current iteration; T denotes the

max no. of iterations. Here, a represents a constant
decreasing linearly from a to 0 (usually a = 2) over the

iterations.

3.6 Swallow swarm optimization (SS)

The SS is (swarm intelligence) developed by Neshat et al.

(2012). It uses the behavior of the swallow swarm birds.

The swallows are characterized by an immigration, high
speed flying, skilled hunting, power for communication and

interest in the social life. They are also leaders, which lead

the small groups in the search of food. The leadership
ability develops the concept of the local leaders and the

head leaders. The algorithm potential lies with the concept

of the exploration of a large search space. The SS and PSO
have some similar features, but they also have several

noteworthy differences. Progressive optimization is done

of the randomly generated initial population of particles.
Three categories of the particles take into consideration

while executing the searching operation. The leader parti-

cles are divided into two categories: local leaders (LL), so
as to deal with the connected internal sub-colonies, illus-

trate a local optimum point; and head leader (HL) is

accountable for the leadership of the whole colony and it
represents a global optimum point. Here, the explorer

particles constitute a bigger part of the population. These

pay attention toward the exploration of the design space
which might have missed by the groups. The aimless par-

ticles move randomly for a better solution. In every itera-

tion (k), they take part in the special roles. The equations
governing the movement and the exploring procedure are

as specified below.

Xkþ1
i ¼ Xk

i þ Vkþ1
i ð16Þ

Vkþ1
i ¼ Vkþ1

HLi þ Vkþ1
LLi ð17Þ

Vkþ1
HLi ¼ Vk

HLi þ aHLrandðÞðXbestki % Xk
i Þ þ bHLrandðÞðHLk

i

% Xk
i Þ

ð18Þ

Vkþ1
LLi ¼ Vk

LLi þ aLLrandðÞðXbestki % Xk
i Þ þ bLLrandðÞðLLk

i

% Xk
i Þ

ð19Þ

Oiþ1 ¼ Oi þ randðf%1; 1gÞ ) randðmins;maxsÞ
1þ randðÞ

* +
ð20Þ

Xkþ1
i is the new position of an exploring particle, Xk

i is

the position of an exploring particle, Vkþ1
i is the changed

new velocity of an exploring particle, Vk
HLi is the velocity

of the head leader, Vkþ1
LLi is the velocity of the local leader,

Xbestki is the best position of an exploring particle, HLk
i is

the position of the head leader, LLk
i is the position of the

local leader, aHL denotes the acceleration coefficient of the

head leader, bHL represents the acceleration coefficient of
the head leader,aLL is the acceleration coefficient of the

local leader, bLL represents the acceleration coefficient of

the local leader and Oiþ1 is the next position of the random
particle. The various parameters aHL, bHL, aLL, bLL can be

calculated as discussed in the referred article (Neshat
Mandal et al. 2012).

3.7 The proposed Levy swallow swarm
algorithm (SSLY)

The proposed algorithm provides remarkable better solu-
tions. Swallow swarm algorithm is popular for its effort-

lessness and its exploitation capability to search for the

global or near-global solution. In addition, the SS algo-
rithm provides an improved local search method with good

initial estimates to resolve the filter design problems. The

algorithm potential also lies within the concept of
exploitation, to avoid the local minima, for getting a global

or near-global solution. Here, we exploit more numbers of

younger swallow birds to search better food randomly, so
that they never stuck off with the local minima. We call

them exploited birds. Sometimes, they also provide us

useful global information. The product * indicates the

Design of optimal low-pass filter by a new Levy swallow swarm algorithm 18117

123

Author's personal copy



entrywise multiplication. In this sense, an enhanced

exploitation feature is incorporated in our proposed SSLY
algorithm, which is described below. Equations (21) to

(24) are same as the normal swallow swarm mathematical

expressions, which produce the improved solutions. These
improved solutions are further refined by the use of

Eq. (25) with the concept of Levy distribution function.

After the refinement, the value is the fitness of the global
best and is compared with the fitness of the aimless particle

for further improvement, if possible.

Vkþ1
HLi ¼ Vk

HLi þ aHLrandðÞðXbestki % Xk
i Þ þ bHLrandðÞðHLk

i

% Xk
i Þ

ð21Þ

Vkþ1
LLi ¼ Vk

LLi þ aLLrandðÞðXbestki % Xk
i Þ þ bLLrandðÞðLLk

i

% Xk
i Þ

ð22Þ

Vkþ1
i ¼ Vkþ1

HLi þ Vkþ1
LLi ð23Þ

Xkþ1
i ¼ Xk

i þ Vkþ1
i ð24Þ

Xkþ1
i ¼ Xkþ1

i þ a* Levy kð Þ ð25Þ

LevyðkÞ ¼ u

v½ -
1

ðk%1Þ

Oiþ1 ¼ Oi þ randðf%1; 1gÞ ) randðmins;maxsÞ
1þ randðÞ

* +
ð26Þ

where a is the step size newly introduced in this algorithm,

Levy(k) is taken from the Levy distribution (Mantegna
1994). In this connection, Mantegna’s algorithm may be

used. It is computed as (Mantegna 1994). The step size a is

chosen for a better exploitation of the local searched space.
In all these equations, the coefficients are calculated using

the mathematical formulations provided here. This method

works as it uses the concept of the Levy distribution to
further refine the search space. Equation (24) is the update

equation for the normal SSO. The addition of the Levy

term as in Eq. (25) helps us in updating the position faster
by exploiting the optimum solution from the solution

space. The characteristics of the Levy flight make the step

size adaptive resulting in a quicker selection of the opti-
mum solution (Fig. 1).

Steps of the Levy swallow swarm optimization

algorithm
Step 1 Initialize randomly the positions along with

velocities of the entire particles.

Step 2 Calculate the objective fitness function values for
all the particles.

Step 3 Assign HL and LLs from the initial population.

Step 4 Update location and velocity of every exploring
particle.

Step 5 Find the Local leader in different groups by

considering the fitness values.
Step 6 Form all local leaders and find a head leader.

Step 7 Apply the Levy concept to further update the

position and velocity of the head leader; and select the best
after comparison with the past head leader value.

Step 8 Update the velocity of the exploring particle

using the updated parameter of the head leader in the next
iteration.

Step 9 Compare the refined head leader value with the
random aimless particle for further improvement; if

possible.

Step 10 Verify the termination condition.
Step 11 If the criterion is not fulfilled, then repeat the

step number 2 to 10.

Step 12 After the criterion is fulfilled, get the optimum
values.

This newly introduced algorithm is used for computing

the optimal filter coefficients. It is reiterated that the
objective function introduced in Eq. (6) is used to achieve

the best results.

4 Results and discussions

This section presents non-recursive FIR filter design using

GA, PSO, CS, FA, SCA, SS and SSLY. Extensive simu-

lation using the MATLAB (Hussain et al. 2011) is

Table 1 Control parameters for GA, PSO, SS, CS, FA, SCA and
SSLY

Algorithm parameters and standard values

GA PSO

Population size 100 Population size 100

Crossover rate 0.8 Cognitive parameter (C1)-2.05

Crossover two-point Cognitive parameter (C2)-2.05

Mutation rate 0.001 Inertia weight (w)-0.9

Selection probability 1/3

CS FA

Population size 100 Population size 100

Discovery rate (Pa) 0.25 a - 0.2, b - 1, ! - 1

SCA SS

Population size 100 Population size 100

r1, r2, r3, r4 aHL, bHL, aLL,bLL-

Referred in Mirjalili (2016) Neshat et al. (2012)

SSLY

Population size 100

aHL, bHL, aLL,bLL
Neshat et al. (2012)

Mantegna (1994)
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performed to design the FIR LP filters (order 20 & 30).

Hence, filter coefficients lengths are taken as 21 & 31,

respectively. Equation (6) is used here as the objective
function. Optimized coefficients are obtained by deploying

seven optimization techniques. For getting the best results,

we consider 50 runs. All codes are implemented in the
MATLAB on a core i3 processor, 2.20 GHz with 4 GB

RAM.

The design of FIR filter is a highly computational task,
and it involves a lot of parameters to be optimized, to get

the best solution. A perfect design process involves several

parameters to handle (as operational constraints). The
design constraints include the ripples in the pass band

together with the stop band, the pass-band attenuation, the

stop-band attenuation and the transition time. The com-

putational cost of hardware, including memory as well as
the computation time, is the most necessary ingredients of

the design process. When the order of the filter increases,

there is an increase in the computational complexity.
Hence, the computation time also increases. To meet the

design challenges, the hardware that includes a faster

processor and more memory to handle the faster processing
with a lesser amount of time is of prime requirement. For

real-time applications, the memory and the time of com-

putation play a vital role. So, there is a need of trade-off
between these two factors. When the order increases from

Table 2 Optimized coefficients for 20 order FIR low-pass filter

hh(n) GA PSO CS SS SSLY FA SCA

hh(1) = hh(21) 00.02371 00.02054 00.02031 00.01920 00.01822 00.02021 00.01979

hh(2) = hh(20) - 00.04570 - 00.04772 - 00.04760 - 00.03931 - 00.02930 - 00.04758 - 00.04648

hh (3) = hh(19) - 00.03592 - 00.03460 - 00.03401 - 00.03371 - 00.03250 - 00.03398 - 00.03370

hh(4) = hh(18) 00.00951 00.00901 00.00850 00.00820 00.00721 00.00852 00.00902

hh(5) = hh(17) 00.07221 00.06860 00.06801 00.05501 00.04501 00.06794 00.05997

hh(6) = hh(16) 00.02430 00.02358 00.02358 00.02251 00.02150 00.02356 00.01953

hh(7) = hh(15) - 00.08732 - 00.07714 - 00.07710 - 00.07230 - 00.07131 - 00.07714 - 00.08012

hh(8) = hh(14) - 00.07731 - 00.07911 - 00.07909 - 00.06751 - 00.06650 - 00.07619 - 00.08116

hh(9) = hh(13) 00.06362 00.06244 00.06144 00.05840 00.05801 00.06082 00.06187

hh(10) = hh(12) 00.28941 00.28901 00.27900 00.29070 00.29001 00.27805 00.28900

hh(11) 00.42001 00.42001 00.42001 00.42001 00.42001 00.42001 00.42001

Table 3 Optimized coefficients for 30 order FIR low-pass filter

hh(n) GA PSO CS SS SSLY FA SCA

hh(1) = hh(31) 00.02692 00.02178 00.02270 00.02268 00.01586 00.02598 00.02076

hh(2) = hh(30) - 00.00499 - 00.00557 - 00.00599 - 00.00598 - 00.00580 - 00.00489 - 00.00566

hh (3) = hh(29) - 00.02257 - 00.02252 - 00.02350 - 00.02342 - 00.02502 - 00.02253 - 00.02247

hh(4) = hh(28) - 00.00827 - 00.00842 - 00.00856 - 00.00855 - 00.00872 - 00.00825 - 00.00838

hh(5) = hh(27) 00.01874 00.01562 00.01673 00.01672 00.01411 00.01871 00.01545

hh(6) = hh(26) 00.02084 00.02088 00.02099 00.02098 00.02195 00.02085 00.02091

hh(7) = hh(25) - 00.00918 - 00.00943 - 00.00924 - 00.00923 - 00.00939 - 00.00916 - 00.00939

hh(8) = hh(24) - 00.03069 - 00.03077 - 00.03089 - 00.03088 - 00.03197 - 00.03064 - 00.03071

hh(9) = hh(23) - 00.00154 - 00.00145 - 00.00144 - 00.00144 - 00.00133 - 00.00146 - 00.00143

hh(10) = hh(22) 00.04736 00.04524 00.04720 00.04714 00.04703 00.04726 00.04562

hh(11) = hh(21) 00.03164 00.03023 00.03154 00.03153 00.03139 00.03162 00.03048

hh(12) = hh(20) - 00.05899 - 00.05778 - 00.05889 - 00.05888 - 00.05890 - 00.05887 - 00.05674

hh(13) = hh(19) - 00.08514 - 00.08248 - 00.08460 - 00.08458 - 00.08405 - 00.08514 - 00.08241

hh(14) = hh(18) 00.06995 00.06652 00.06993 00.06992 00.06991 00.06896 00.06586

hh(15) = hh(17) 00.31240 00.30150 00.30100 00.30130 00.29680 00.30214 00.30138

hh(16) 00.40510 00.40510 00.40510 00.40510 00.40510 00.40510 00.40510
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20 to 30, there is an increase in the computational time and

the memory requirement. If the computation time is to be
reduced, then the hardware requirement increases. This, in

turn, increases the computational cost for the processing.

So, the trade-off is required in between the computational
time and the computational cost while choosing an FIR

filter of certain orders. In this paper, the designs of FIR

filter of order 20 and 30 are discussed. The idea can also be

extended to the design of higher order FIR filter with an

increased computation time and memory.
The pass-band ripples and the stop-band ripples play a

vital role in the design of the optimized filters with required

constraint handling capability. For a perfect digital optimal
filter, the pass-band ripple as well as the stop-band ripples

should be as minimum as possible or should meet the

desired constraints. The stop-band attenuation of the

Table 4 Statistical analysis of pbr for FIR low-pass filters (order 20)

Method Normalized pass-band ripple

Max. Mean Var. SD

GA 1.172 1.072 0.0092 0.0959

PSO 1.158 1.061 0.0076 0.0871

CS 1.149 1.052 0.0053 0.0728

FA 1.147 1.049 0.0052 0.0721

SCA 1.150 1.046 0.0048 0.0692

SS 1.094 1.041 0.0038 0.0616

SSLY 1.053 1.019 0.0031 0.0556

Table 5 Statistical analysis of pass-band ripple for FIR low-pass fil-
ters (order 30)

Method Normalized pass-band ripple

Max. Mean Var. SD

GA 1.038 1.017 0.0087 0.0932

PSO 1.021 1.001 0.0071 0.0842

CS 1.022 0.998 0.0051 0.0714

FA 1.029 0.999 0.0052 0.0721

SCA 1.019 0.996 0.0046 0.0678

SS 1.021 0.994 0.0034 0.0583

SSLY 1.017 0.988 0.0028 0.0529

Table 6 Statistical analysis of sbr for FIR low-pass filter (order 20)

Method Normalized stop-band ripple Transition width

Maximum Mean

GA 0.1487 0.1173 0.0732

PSO 0.1368 0.1107 0.0764

CS 0.1217 0.1064 0.0795

FA 0.1328 0.1066 0.0762

SCA 0.1173 0.0983 0.0764

SS 0.1079 0.0782 0.0855

SSLY 0.0975 0.0618 0.0945

Table 7 Statistical analysis of sbr for FIR low-pass filters (order 30)

Method Normalized stop-band ripple Transition width

Max. Mean

GA 0.1095 0.0531 0.0605

PSO 0.0919 0.0452 0.0668

CS 0.0882 0.0411 0.0672

FA 0.0998 0.0408 0.0674

SCA 0.0741 0.0402 0.0680

SS 0.0778 0.0360 0.0682

SSLY 0.0711 0.0319 0.0687

Table 8 Statistical analysis of stop-band attenuation (sba) for FIR
low-pass filter (order 20)

Method sba (dB)

Mean Var. SD

GA - 18.6212 - 49.8970 - 24.9485

PSO - 19.1214 - 51.7005 - 25.8502

CS - 19.3736 - 54.8945 - 27.4472

FA - 19.3428 - 54.9606 - 27.4303

SCA - 20.1338 - 55.7654 - 27.8827

SS - 22.1402 - 56.4781 - 28.2390

SSLY - 24.1814 - 58.4613 - 29.2306

Table 9 Statistical analysis of sba for FIR low-pass filter (order 30)

Method sba (dB)

Mean Var. SD

GA - 25.4890 - 50.1727 - 25.0863

PSO - 26.8964 - -52.3957 - 26.1978

CS - 27.7302 - 55.3910 - 27.6955

FA - 27.7854 - 55.3764 - 27.6882

SCA - 27.9132 - 56.2456 - 28.1228

SS - 28.8698 - 57.0774 - 28.5387

SSLY - 29.9326 - 59.1721 - 29.5860

18120 S. K. Sarangi et al.

123

Author's personal copy



designed filter should be as minimum as possible. The

pass-band as well as the stop-band ripples along with the
pass-band and the stop-band edge frequencies are acting as

the constraints on the designed objective function. The

design parameters are:
Pass-band ripple (pbr) = 0.08.

Stop-band ripple (sbr) = 0.02.

Pass-band (normalized) edge frequency (xp) = 0.40.
Stop-band (normalized) edge frequency (xs) = 0.44.

Transition width = 0.04.

Table 1 signifies the best selected control parameters
used for various optimization algorithms. We have exper-

imented with different values for the selection of control

parameters. The results are verified over a range of ± 20
percent of the reported value. After extensive simulation

work, the best values for control parameters are obtained,

which is generally done by the optimization research
community. These values are reported in the Table 1. It is

significant to declare here that some of the control

parameters are directly chosen from the paper as noted in
Table 1.

From the simulation study, it is observed that the GA

offers wide diversity of new solutions, which are obtained
through mutations and crossovers. It seems that the search

space is more enhanced (better exploration). However, a

higher mutation may drift away the solutions with a pre-
mature convergence. That is the reason why we have

chosen a very low mutation rate of 0.001. The selection

process in GA also exhibits a vital role in the convergence
of the algorithm. Through this process, the best solutions

are selected and the rest is discarded. Here, the selection

probability is 1/3. Further, a two-point crossover technique
is deployed with a crossover rate of 0.8.

Table 2 shows the finest optimized coefficients for

designing FIR LP filters of order 20, and Table 3 shows
similar coefficients for 30 order LP FIR filter. Note that

hh(n) indicates the impulse response, where n is an integer.

These coefficients are calculated (optimized) using GA,
PSO, CS, FA, SCA, SS and SSLY algorithms. In fact, the

design parameters like pass-band and stop-band ripple;

pass-band and stop-band normalized edge frequencies,
stop-band attenuation and width for transition are deter-

mined by these coefficients. Therefore, it is inevitable to

obtain optimal filter coefficients to get the best design
parameters. Attained design parameters, by using our

algorithm (SSLY), are displayed in this section.

Tables 4, 5, 6, 7, 8, 9, 10 and 11 summarize outcome of
various performance parameters calculated by means of

GA, PSO, CS, FA, SCA, SS and SSLY for LP filters of

Table 10 Qualitative analysis
(order 20)

Method Min. sba (dB) Max. average pba (dB) Exen. time (s) per 100 cycles variance

GA - 16.60 1.0745 9.288446

PSO - 17.69 0.9742 3.003681

CS - 17.28 0.8462 2.561602

FA - 17.51 0.9448 3.009822

SCA - 18.62 0.8747 3.018784

SS - 19.34 0.5807 4.010023

SSLY - 20.27 0.3488 4.070722

Table 11 Qualitative analysis
(order 30)

Method Min.sba (dB) Max. avg.pba (dB) Exen. time (s) per 100 cycles variance

GA - 19.17 0.2684 9.832849

PSO - 20.73 0.1847 3.183201

CS - 20.96 0.1640 2.753601

FA - 20.02 0.1812 3.125668

SCA - 22.26 0.1628 3.258860

SS - 22.18 0.1248 4.341829

SSLY - 22.97 0.1102 4.420722

Table 12 t test result (order 20 LP)

Algorithm pbr sbr

t Sterror t Sterror

GA 1.5119 0.0350 2.6490 0.0209

PSO 1.2853 0.0326 2.5118 0.0194

CS 1.1392 0.0289 2.5729 0.0173

FA 1.0419 0.0287 2.5771 0.0172

SCA 0.9618 0.0280 2.1740 0.0167

SS 0.8384 0.0262 0.9989 0.0164
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orders 20 and 30, respectively. Tables 4 and 5 display
values of the normalized pass-band ripple for 20 and 30

order low-pass FIR filters, respectively. The pass-band
ripple obtained by the SSLY is the lowest in terms of the

mean, max., min., var. and stdv. compared to other algo-

rithms. This shows that the SSLY is very efficient in
reduction of the pass-band ripple with the least deviation,

which is a desirable property for an effective digital filter.

On comparing Tables 4 and 5, it can be easily verified that
the ripples are less in 30 order filter designed using the

SSLY algorithm.

The statistical analysis of the stop-band ripple is listed in

Tables 6 and 7 for the low-pass filter of orders 20 and 30,
respectively. From Table 6, it can be easily verified that the

maximum normalized stop-band ripple value of the SSLY

algorithm is 0.0975, i.e., minimum as compared to other
optimization algorithms. Similar conclusions can be drawn

from Table 7 for the low-pass filter of order 30.

The stop-band attenuation (sba) plays an essential role in
the filter design. More is the stop-band attenuation, better is

the performance of a low-pass filter. Using the filter coef-
ficients displayed in Tables 2 and 3, the stop-band atten-

uations for different orders are computed and presented in

Tables 8 and 9. It is observed that the suggested SSLY
algorithm offers an average (avg.) stop-band attenuation of

- 24.1814 dB for the order 20 and - 29.9326 dB for the

order 30 which is best among all other algorithms. The
variance and the standard deviation provided by the SSLY

are also minimum, i.e., - 58.4613 dB and - 29.2306 dB

for order 20 with similar range of values for order 30,
respectively. The best part of the SSLY algorithm is that

the variance and the standard deviation are the lowest

among all algorithms which emphasize the accuracy and
precision of the result. The minimum values of the variance

and the standard deviation indicate the consistent and

precise results.
The execution time for the different algorithms for low-

pass FIR filters of order 20 and order 30 is listed in

Tables 10 and 11, respectively. GA takes the maximum
time, whereas CS takes the least time. CS requires a very

few control parameters resulting in a very high speed. Our

proposed SSLY algorithm takes 4.42 s, which is close to
the second contestant SS algorithm. However, our algo-

rithm performs better than the CS and SS while considering

the optimal design parameters. But when the comparison is
done in the domain of the transition width, the SSLY is

taking a little higher transition width among all the

algorithms.
Figures 2 and 3 show normalized frequency response

and the magnitude (dB) response of the FIR low-pass filters

using GA, PSO, CS, FA, SCA, SS, SSLY algorithms for
the order 20 and 30, respectively. Figures 4 and 5 show the

enlarged pass band and enlarged stop band of the (20-

order) filter. From these figures, it can be easily verified
that the normalized pass-band ripple as well as the stop-

band ripple is minimized, when filter design is done using

the proposed SSLY algorithm. A clearer picture regarding
the effectiveness of the SSLY is obtained by Figs. 4 and 5

which indicates the maximum average attenuation.

Figures 6, 7, 8 and 9 describe the normalized frequency
response, enlarged pass-band and expanded stop-band,

magnitude response in dB for the low-pass filter of order 30

using all seven algorithms, respectively. From these fig-
ures, it can be easily verified that the SSLY algorithm has

Generate a population and 
randomly initialize position 

and velocity

Form HLi ,LLi and Oi from the 
population and evaluate fitness of all

Is objective 
satisfied?

Assign the corresponding LL

Determine the various 
parameters for velocity 

and position update      

Compare the aimless 
particle with the levy 

refined values

Update the aimless particle

Preserve the best values

Output is HL
Yes

No

Update the position and 
velocity of the LL and HL with 

the normal swallow swarm 
expressions 

Apply the Levy flight concept 
for further refinement of best 

values

Fig. 1 Flowchart of the Levy swallow swarm algorithm
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the lowest pass-band ripple, the lowest stop-band ripple
and the maximum stop-band attenuation.

Figure 10 indicates the convergence profiles of the LP

filter of order 20 for different algorithms. Simulation
results are also obtained for the LP filters of orders of 30,

but not shown here to conserve the space. The profile

shows that the SSLY, i.e., the proposed swallow swarm
optimization algorithm-based filter design, converges to a

great deal of lower error compared to GA, PSO, CS, FA,

SCA and SS algorithm.
In summary, the proposed SSLY algorithm technique

for the design of the low-pass filter of 20th order results in

- 20.27 dB minimum attenuation in the stop band. It also
provides a maximum ripple (normalized) of 1.053 in the

pass band; maximum ripple (normalized) in the stop band
of 0.0975 and a transition width of 0.0945. Same proposed

SSLY-based approach to the design of the low-pass filter of

30th order results in a minimum attenuation of - 22.97 dB
in the stop band. It also provides a maximum ripple (nor-

malized) in the pass band of 1.017, normalized maximum

stop-band ripple of 0.0711 and a width of transition of 0.
0687. The proposed SSLY algorithm shows an improve-

ment of attenuation in the stop band as compared to the SS

(previous) algorithm. So, in the stop-band section, filters
designed by the SSLY algorithm result in a finer response;

and it also shows a better result as compared to all other six

algorithms.

Fig. 2 Magn. response (order
20 LP)

Fig. 3 Magn. response (dB)
(order 20 LP)
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From Tables 4, 5, 6, 7, 8, 9, 10 and 11, it can be finally

verified that the filter design by the swallow Swarm opti-
mization algorithm improved by Levy flight is best among

others available for this purpose. The figures demonstrate

the superiority of the modified Levy swallow swarm
algorithm as compared to some conventional evolutionary

optimization techniques. From the simulation results, out-

put figures and discussions, it can be verified that with the
nearly equal level of transition width, the filter design

approach based on a modified SSLY algorithm provides the
highest sba (dB) and the lowest sbr with a lowest in the pbr

compared to those of GA, conventional PSO, cuckoo

search algorithm (CS), firefly algorithm (FA), sine cosine

algorithm (SCA) and the conventional swallow swarm

optimization algorithm (SS). With a view to the above facts
and discussions, it could lastly be incidental that the per-

formance of the modified Levy swallow swarm optimiza-

tion algorithm with Levy distribution search is the finest
among all algorithms.

4.1 t Test

To further strengthen our claim, a statistical analysis is
provided here. Nowadays, the t test is used to determine

whether the means of 2 sets are statistically dissimilar. This

test helps us to validate our algorithm. One can compute

Fig. 4 Enlarged pass-band
response (order 20 LP)

Fig. 5 Expanded stop-band
response (order 20LP)
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the values of the t test with the help of the following

equations.

t ¼ mo % maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o
,
no

# $
þ r2a

,
na

# $q ð22Þ

Standard error of difference (Sterror) is represented as

Sterror ¼ Sp
1

no
þ 1

na

' (0:5

ð23Þ

The pooled standard deviation Sp is written as

Sp ¼
no % 1ð Þr2o þ na % 1ð Þr2a

no þ na % 2

' (0:5

ð24Þ

where ma is the mean value of the SSLY. Here, mo is the

mean value of the rest of the methods considered for a
comparison (GA, PSO, CS, FA, SCA and SS). In this

section, ra and na denote the stdv. of SSLY and the no. of

samples calculated in SSLY, respectively. Further, ro
denotes the stdv. of the rest of the methods (GA, PSO,

CS,FA, SCA,SS) while no is used to refer to the number of

samples calculated in the other methods. These parameters
play important role in the statistical analysis.

Fig. 6 Magn. response (order
30 LP)

Fig. 7 Enlarged pass-band
response (order 30 LP)
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A deeper analysis is carried out using t test. GA, PSO,
CS, FA, SCA or SS are compared with SSLY. From

Tables 12 and 13, it is seen that the t values are positive.
This shows the dominance of the newly suggested SSLY

method over other methods (SS, SCA, FA, CS, PSO or

GA). Table 12 clearly shows the dominance of the SSLY
over SS, SCA, FA, CS, PSO and GA for designing the LP

filter of order 20. It may be reiterated that t values pbr &

sbr for SS, SCA, FA, CS, PSO and GA are ?ve. It may be
noted that Sterror and the t value of the SS method is lesser

than SCA, FA, CS, PSO and GA. This implies that SS is

better than SCA, FA, CS, PSO and GA. Table 13 reveals

that SSLY has shown a superior act while designing FIR

low-pass filter of order 30 compared to SS, SCA, FA, CS,
PSO and GA methods. From the above statistical analysis,

it is also observed that the t value & Sterror of SS is min. out

of the rest five, which signify its dominance over SCA, FA,
CS, PSO and GA methods. In this sense, SS is the second

contestant among all 7 methods. To be precise, our pro-

posed SSLY method is the first contestant. It performs well
and seems to be well suited for the filter design with a

higher accuracy.

Fig. 8 Expanded stop-band
response (order 30 LP)

Fig. 9 Magn. response (dB)
(order 30 LP)
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5 Conclusions

This research develops a new proficient algorithm in

swarm intelligence by introducing Levy flight in the
swallow swarm optimization. Since the population is dis-

tributed in sub-colonies, the particles have the scope to

learn from the finest globally experienced particle as well
as commencing the most excellent particle of every sub-

colony. The suggested SSLY method integrated the con-

cept of searching better with further refinement as well as
searching a large space for a better design of optimal filters.

An appropriate balance is created amid the global and the

local exploration. In this work, the explorer particles are
better utilized by the exploited particles; to additionally

regulate local searching ability. Our suggested method is

tested in the design of an optimal filter by comparing it
with the six standard global optimization algorithms.

Numerical results verified the effectiveness of the sug-

gested optimization algorithm that outperformed others in
the design of an optimal filter with higher stop-band

attenuation. The proposed modified SS algorithm may be

useful for optimization. Further, the newly proposed
objective function may be useful for the design of the

maximally flat filters.
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