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A B S T R A C T   

Heart disease has recently become a major cause of high mortality rates. Concurrently, data mining (DM) has also 
attracted increasing attention in the healthcare field. Identifying this disease in the starting stage helps to 
minimize treatment costs, thereby saving people’s lives. Although several classification models have been 
applied in recent years, they are deficient in their prediction accuracy. Hence, this research intends to apply DM 
methods for heart disease prediction by concentrating on maximum accuracy. The proposed scheme is evaluated 
for the performances in terms of various performance metrics using HD datasets (Statlog + Hungary + Cleveland 
+ Switzerland + long beach VA datasets). Deep Convolutional Neural Network (CNN) models have been pro-
posed to extract relevant features owing to their capability for automatic and effective learning. Subsequently, 
the fusion was performed. Following this, D-t-SNE (Distributed-t-Stochastic Neighborhood Embedding) is 
introduced to reduce dimensionality reduction to solve over fitting issues and remove redundant data to improve 
the classifier performance for predicting heart disease. Furthermore, efficient classification is undertaken by the 
introduced hyper-parameter-tuned MLP (H-MLP), as it has the ability to solve classification issues. Finally, the 
proposed work was assessed through comparison with traditional techniques with respect to accuracy, precision, 
sensitivity, Matthew’s correlation coefficient (MCC), F1-score, specificity, and negative predictive value (NPV). 
The outcomes showed the superior prediction of this system compared to conventional research.   

1. Introduction 

According to reports by the World Health Organization (WHO), heart 
disease is the major cause of mortality worldwide taking nearly 17.9 
million lives every year. Prediction of this disease is important in its 
early stages affording appropriate treatments in a timely manner and 
minimizing the death rate. In recent years, DM techniques have been 
used to solve several challenges in managing and examining specific 
data in medical centers [1,2,31]. Several traditional studies have applied 
various DM methods to predict this type of disease with enhanced ac-
curacy. In addition, the common issues of healthcare centers have been 
that all experts do not possess equal skill and knowledge for treating 
patients. They apply their own decision-making which might provide 
poor outcomes leading to the death of patients. To solve this issue, 
predicting the presence of this disease through DM methods plays a 

crucial role in its diagnosis. Hence, a review was undertaken to explore 
the few ML algorithms utilized to predict heart diseases namely, support 
vector machine (SVM), artificial neural network (ANN), K-nearest 
neighbor (K-NN), naïve Bayes (NB), and decision tree (DT). The main 
benefit of the survey is that it enhances traditional research in making 
better decisions through the use of feature selection techniques and 
various algorithms. Appropriate selection of features plays a major role 
in improving classification accuracy. In addition, dimensionality 
reduction provides support for improving prediction accuracy [3]. 
Applying classification techniques to disease datasets provides better 
results through the development of an intelligent, adaptive, and auto-
mated system for predicting heart diseases [432]. 

Traditional research has attempted various approaches to diagnose 
heart disease. Accordingly, a hybrid random forest with linear model 
(HRFLM) has been endorsed to find significant features through the 
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employment of ML methods, leading to enhanced prediction accuracy. 
Various feature combinations and renowned classification methods have 
been presented with an accuracy of 88.7% accuracy [5]. To enhance the 
model performance, it is vital to select correct and significant feature 
combinations. Thus, significant features were identified and DM 
methods were used to improve the prediction rate. Seven classification 
methods, DT, NB, K-NN, SVM, NN, LR (logistic regression), and vote (NB 
+ LR), were applied. The empirical outcomes revealed that the predic-
tion of heart disease through voting accomplished 87.4% accuracy [6,7]. 
Three DM classification algorithms, RF (Random Forest), NB, and DT 
were addressed and utilized for developing a prediction system to 
analyze heart disease probability. This study helps to find an effective 
classification method suitable for achieving high accuracy. The RF al-
gorithm showed better performance, with an 81% precision rate [8]. 

Although conventional research aimed to effectively perform heart 
disease prediction, it lacked relevant feature extraction and dimen-
sionality reduction, which eventually impacted the accuracy rate. Thus, 
an effective technique using DM methods to enhance the detection rate 
is vital for diagnosing this disease. Hence, this research introduces 
distributed t-stochastic neighbor embedding (D-t-SNE) to reduce 
dimensionality as it is capable of preserving global and local structures. 
It also helps to easily comprehend high-dimensional data and project 
them into a low-dimensional space, which makes it valuable when 
handling CNN networks. The present work performs feature extraction 
through two deep CNNs, as it is computationally efficient and possesses 
several layers. It can also learn several parameters required to solve the 
challenges that enable the efficient retrieval of relevant features. 
Furthermore, the hyper parameters are also vital as they manage the 
model’s overall behavior. The primary aim of this process is to discover 
an optimal hyper parameter combination that reduces the predefined 
loss function to obtain better outcomes. In addition, the adaptive 
learning ability of MLP and the suitability of this algorithm for solving 
classification issues have made this study propose a hyper-parameter- 
tuned MLP (H-MLP). Owing to these merits, the proposed methods are 
expected to yield better predictions which are confirmed through the 
results. 

The major contributions of this study are listed below:  

• Feature extraction and feature-level fusion were performed through 
introduced deep CNN models to select only significant and relevant 
features.  

• Accomplished dimensionality reduction by the proposed D-t-SNE 
(Distributed-t-Stochastic Neighbour Embedding) for enhancing the 
classifier performance.  

• Classified the absence and presence of the disease through the 
introduced hyper-parameter-tuned multilayer perceptron (H-MLP) 
so as to attain better accuracy.  

• Evaluated the effectiveness of the proposed system in prediction of 
heart disease through comparative analysis with regard to accuracy, 
precision, sensitivity, F1-score, Matthew’s correlation coefficient 
(MCC), specificity, and negative predictive value (NPV). 

The paper is organized as follows. Section 1 explores WHO reports on 
heart disease prediction, various approaches used by the existing sys-
tem, the main problems faced by conventional works and the methods 
proposed to solve these issues. Section 2 reviews the existing research to 
highlight the methods used and the obtained results. This section pre-
sents the problems encountered during this analysis. Section 3 
comprehensively describes the main ideas of the proposed system with a 
flow chart, architecture, algorithm, and pseudo code. The results are 
discussed in section 4. Finally, the overall research is concluded in 
Section 5, along with the future scope of this work. 

2. Related work 

Various DM methods have been used by different traditional 

investigators for heart disease prediction. These methods were then 
analyzed and explored. The significant and general issues identified in 
this analysis are also presented in this section. 

2.1. Feature extraction for predicting heart disease 

An approach has been endorsed for cardiac arrhythmia detection in 
ECG signals by focusing mainly on feature extraction and classification. 
Accuracy, specificity, computational cost and sensitivity were the 
evaluation metrics employed for the analysis. Higher-order statistics 
(HOS), structural co-occurrence matrix (SCM), Goertzel, and Fourier 
have been the methods used for feature extraction. In addition, SVM, 
multilayer perceptron (MLP), optimum path forest (OPF) and Bayesian 
methods have been used as classifiers. These methodologies were tested 
and compared with six conventional feature-extraction techniques. Ac-
curacy has been found to be 94.3% [9]. Medical test results have also 
been used as inputs for extracting features with minimum dimensions to 
afford better heart disease diagnosis. Suggested system extracts high 
influencing new projection features through Probabilistic Principal 
Component Analysis (PPCA). Feature subclasses with minimized di-
mensions have been afforded to radial basis function (RBF)-based SVM 
for classification that achieved 82.18% accuracy for the Cleveland 
dataset, 85.82% for the Hungarian dataset and 91.30% accuracy for the 
Switzerland dataset [10,11]. To further enhance the system, neural 
network-feature correlation analysis (NN-FCA) was used in two phases. 
The initial stage is feature selection, which makes features agree with 
the significance of predicting the risk of heart disease. The subsequent 
stage is FCA, in which learning occurs about the prevalence of correla-
tions among feature relations and data of individual NN predictor out-
comes are found. The recommended system has been found to be better 
than the Framingham Risk Score (FRS) with respect to risk prediction of 
this disease [12]. Similarly, different approaches have been used by 
conventional works; accordingly, the feature selection technique called 
incremental feature selection algorithm (IFSA) has been endorsed as an 
integrated intelligent conditional random field (ICRF) concept, ICRF- 
LCFS (ICRF-Linear Correlation-coefficient based Feature Selection) and 
T-CNN (traditional CNN with temporal features). The recommended 
system for predicting the disease has been assessed to achieve better 
accuracy with a minimum false alarm rate (FAR). T-CNN has also been 
valuable for improving the level of performance with respect to pre-
diction accuracy above 93% [13]. Thus, feature selection among data-
sets has been the main factor that affects prediction accuracy. The MCC 
was also considered in this study. Modified particle swarm optimization 
(PSO) was employed to select suitable attributes. An enhanced fuzzy 
ANN was used for the prediction. The maximum prediction rate was 
88.82% for male patients and 88.05% for female patients [14]. 

2.2. Classification for predicting heart disease 

Hybrid classification systems have been suggested that rely on the 
relief and rough set (RFRS) for diagnosing heart disease. The jackknife 
cross-validation method has been accomplished that showed a 92.59% 
accuracy [15]. Similarly, an effective decision-making system in medi-
cine is vital. Thus, twin SVM has been recommended for predicting the 
absence or presence of heart disease. This method discovers dual non- 
parallel and hyper-planes, for which each one has been identical to 
the initial class and is far from the subsequent class as probable. Ex-
periments were conducted on a real-time dataset and an evaluation was 
performed that exposed an 86.75% accuracy rate [16,17]. To further 
improve accuracy, an enhanced deep learning-assisted convolutional 
neural network (EDCNN) has been endorsed for supporting and 
enhancing heart disease prognostication. The performance of the system 
was assessed based on the overall and reduced features. It has been 
found that feature reduction affects classifier efficiency with respect to 
accuracy and processing time [18]. To enhance the system, a DM algo-
rithm has been proposed. Many prediction studies have utilized complex 
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patient data, such as biomarkers, pathological measurements and 
biomedical images. Method similar to language model has been 
demonstrated to predict high risk prognostication from patient’s history 
through deep RNNs (Recurrent Neural Networks). Mentioned system 
utilized multiple RNNS to learn from the prediction of patient’s code 
sequences for identifying diseases of high risk [19]. Finally, the empir-
ical outcomes revealed that the endorsed technique could achieve better 
outcomes. In contrast, gated recurrent units (GRUs) have been suggested 
to predict heart failure. Compared to renowned techniques such as LR, 
MLP, K-NN, and SVM, the GRU models exhibited better performance. 
Through analysis, the significance of the medical record sequence has 
been discussed [20]. Different methods have shown varied classification 
outcomes. Correspondingly, ANN showed 97% accuracy, CART showed 
87.6% accuracy, NN exhibited 97.4% accuracy, SVM exhibited 95.6% 
accuracy, LR explored 72% accuracy, and multi-criteria oriented deci-
sion analysis and genetic algorithms showed 91% accuracy [21]. 
Although better outcomes were attained by each method, the NN 
showed a high accuracy rate of 97.4%. However, the accuracy must be 
enhanced further to predict the disease correctly. 

2.3. Other methods for predicting heart disease 

Ensemble classification has been analyzed and utilized to enhance 
the accuracy of weak algorithms through the incorporation of several 
classifiers. Experiments were conducted using data and comparative 
analysis to determine the degree to which this method could be 
employed to enhance the accuracy in predicting heart disease. The 
recommended model, namely majority-vote with NB, RF, MLP and BN 
(Bayes Net) showed 85.48% accuracy [22]. To remove irrelevant 

features, the X2-statistical model has been endorsed and a deep neural 
network (DNN) has been searched through an exhaustive search 
method. The efficiency of this model was determined through a 
comparative analysis with the traditional DNN and ANN models. Ac-
curacy has been found to be 93.33% [23]. Through these outcomes, it 
was revealed that identifying important features and efficient DM 
methods could enhance the prediction rate. Thus, nine classifiers were 
applied: DT, LR (logistic regression), Adaboost (adaptive boosting), SGD 
(stochastic gradient descent), RF, GBM (gradient boosting), SVM, G-NB 
(Gaussian-Naïve Bayes) and ETC (extra tree classifier). The imbalance 
class issue was addressed through the synthetic minority oversampling 
technique (SMOTE). Moreover, ML models were trained on maximum- 
ranked features using RF. 

The outcomes were compared with those of traditional ML algo-
rithms using a full feature set. Empirical outcomes showed that ETC 
performed better than other models, with 92.62% accuracy in predicting 
the survival rate of patients with heart disease [24,25]. In addition, a 
hybrid OFBAT-RBFL (oppositional firefly with BAT and rule-based fuzzy 
logic) has been designed to diagnose heart disease. Initially, relevant 
features were chosen from the dataset through locality preserving pro-
jection (LPP), which assists the diagnosis system in developing classifi-
cation models using fuzzy logic. Fuzzy rules were then created from the 
data sample. Among the overall rules, the significant and associated 
rules were selected using the OFBAT algorithm. Subsequently, a fuzzy 
system was designed with the assistance of framed membership func-
tions and fuzzy rules, for which classification could be undertaken with 
the designed fuzzy system. Finally, the experiment was conducted using 
publicly accessible UCI datasets from Hungarian, Switzerland, and 
Cleveland. The results showed that the proposed system performed 

Fig. 1. Proposed flow for predicting heart disease.  
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better than a conventional system with 78% accuracy [26,27]. 

2.4. Problem identification 

Various problems identified through the analysis of above existing 
works are listed below. 

• Traditional studies have attempted to attain better accuracy in pre-
dicting heart disease by using various methods. Accordingly, the 
OFBAT-RBFL method explored 78% accuracy [26], and PSO with an 
improved fuzzy ANN showed 88.82% for male patients and 88.05% 
for female patients [14]. In addition, feature extraction by Parallel 
Probabilistic PCA (PPPCA) explored 82.18%-Cleveland dataset, 
85.82%-Hungarian and 91.30% for Switzerland dataset [10]. 
Moreover, RFRS showed 92.59% accuracy [15], and a novel feature 
extraction method to classify cardiac arrhythmia explored 94.3% 
accuracy [9].  

• Effective algorithms have to be planned for selecting significant 
features for discovery, which is highly suitable for classification [16]. 

• A feature fusion technique was applied [7]. However, the perfor-
mance of this process must be improved using DM methodologies. 

3. Proposed methodology 

The study mainly concentrated on predicting heart disease as it has 
been the reason for many deaths. The selection of relevant and signifi-
cant features, effective dimensionality reduction and enhanced accuracy 
have been major challenges in traditional methods. Hence, this study 
aims to solve these problems by relying on DM methods that encompass 
ML and DL for feature extraction and classification. The overall flow of 
the proposed system is shown in Fig. 1. Several processes are involved in 
disease prediction. First, the Cleveland dataset is loaded. After this pre- 
processing is performed which utilizes data cleaning to eliminate un- 
required data, thereby enabling the user to attain a dataset possessing 
useful information? Then, feature extraction and fusion are performed 
by the introduced deep CNN models that assist in finding a compact and 
informative set of features to enhance the reliability and efficiency of the 
classifier. Subsequently, dimensionality reduction is performed using 
the proposed D-t-SNE. This process minimizes the data storage space 

because a reduction in the dimensions is undertaken. This also assists in 
minimizing the computation or training time and helps to visualize the 
data. Then, it was fed into the train and test splits. Subsequently, the 
classification process is accomplished through the proposed H-MLP, 
which supports the differentiation of the presence or absence of the 
disease. Finally, the prediction is achieved through a trained model. The 
efficiency of the system was evaluated by performing performance 
analysis. 

3.1. Feature extraction and fusion: Deep convolutional neural network 

Generally, a CNN is a type of feed-forward artificial neural network 
(FFANN), which is biologically stimulated through visual cortex orga-
nization. These are extensively employable in various areas such as 
image and video recognition, Recommender System (RS) and Natural 
Language Processing (NLP). A CNN encompasses two main parts: con-
volutional and max-pooling layers. Moreover, the convolutional layer 
provides a feature map as the output through computation of the dot 
product consisting of the local region of input feature map and filter. The 
nonlinear function then estimates the complex functions by squashing 
the output of the NN. In addition, the pooling layer accomplishes down- 
sampling for the feature map by calculating the maximum or average 
value on the sub-region. Fully connected (FC)layers follow stacked and 
pooling layers and Softmax is the last FC layer that calculates the scores 
for each class. Overall, the deep CNN and the CNN were identical. 
However, a deep CNN comprises of several layers. The CNN consists of 
basic parts for feature extraction and classification. In this study, a deep 
CNN was used to extract features. Owing to the numerous layers and 
computational efficiency of CNN, it learns various parameters than are 
needed to solve the challenges that eventually enhance efficiency. The 
deep CNN architecture is shown in Fig. 2 consisting of three convolu-
tional and FC layers. 

For the first convolutional-layer agrresing toe structure of CNN, 
images possessing 183 × 119 pixels as the input are given into a 
convolutional-layer having 96-filters exploring 11 × 11 pixels as the size 
with pixels (2 × 2) as the stride. Then, 96 feature maps were fed to the 
max-pooling layer to obtain a robust CNN structure to translate the 
image. Therefore, the initial layer output comprised 96 feature maps 
with a size of 43 × 27 pixels. The subsequent layer was positioned 
following the starting layer to fine-tune it, which had 128 filters with a 
size of 5 × 5 × 96. Subsequently, additional max-pooling occurs. By 
starting two layers, 128 feature maps were obtained with a size of 21 ×
13 pixels. The first two layers are used to extract low-level features from 
the image. To extract high-level features, three additional convolution 
layers were utilized, as shown in Fig. 2. The third layer has 256 filters 
with a size of 3 × 3 × 128 that are later fed to 3FC layers encompassing 

Fig. 2. Architecture of Deep CNN.  

Table1 
Feature Extraction through Deep CNN.  

Extracted 
Features 

DEEP CNN 
1 

Deep CNN 
2 

Total Dimensionality 
Reduced  

100 500 600 10  
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neurons with orders 4096, 1024, and 2. Following this, features are 
utilized at the 2nd FC layer to extract the features of the image. Hence, 
the feature vector can be extracted, comprising 1024 components for 
each image. 

Thus, the deep CNN 1 model extracts 100 features, whereas deep 
CNN 2 extracts 500 features, as shown in Table1. In total, 600 features 
were extracted. When all of these features are fed into the classification 
stage, more time is consumed which degrades the performance of the 
classifier. For this purpose, dimensionality reduction was performed, 
where all of these features were reduced to 10 based on their signifi-
cance and relevance. 

3.2. Dimensionality Reduction: Distributed-t-Stochastic Neighborhood 
Embedding 

This research proposes D-t-SNE for reducing nonlinear and high- 
dimensional data. It accomplishes dimension minimization through 
projection of a Gaussian distribution corresponding to a high- 
dimensional spatial neighborhood to a low-dimensional D-t-SNE. This 
algorithm can efficiently capture a significant portion of a high- 
dimensional local data structure. It also explored the global structure 
at various scales. To preserve the similarity among high-dimensional 
data and map it into the low-dimensional space, this algorithm con-
verts the distances among actual data points into Gaussian joint prob-
abilities (GJP) through computation of pairwise similarity among these 
data points. The stepwise process involved in this process is discussed 
below: 

Considering a high-dimensional dataset A =
{

f1, f2,⋯⋯fn
}

RD, the 
conditional probability Sb|a of data-point fb to data-point fa is given by 
(1). 

Sb|a =
exp(− ||fa − fb| |2/2σ2

a)
∑

k∕=aexp(− ||fa − fk| |2/2σ2
a)

(1) 

In Eq. (1), σa represents the Gaussian variance, which is centered on 
the data point fa. When Sa|a = 0, the joint probability Sab in high- 
dimensional space is given by (2). 

Sa,b =
Sb|a + Sa|b

2n
(2) 

A low-dimensional dataset is given by B = {b1, b2,⋯, bn}RD. Similar 
to Equation2, when σa of conditional probabilities qj|i is 1̅̅

2
√ , then joint 

probability Qi,j in low-dimensional space is given by (3). 

Qi,j =

(
1 + ||Ba − Bb| |2

)− 1

∑
k∕=l(1 + |

⃒
⃒Bk − B2

l

)− 1 (3) 

To make low-dimensional space possess a similar joint-probability 
distribution along with high-dimensional data, the introduced D-t-SNE 
intends to discover B which reduces the mismatch between P and Q. 
Similarity evaluation among P and Q could be computed through Kull-
back Leibler divergences among low-dimensional distributions and 
high-dimensional data. Moreover, the loss function Q is given by (4). 

Q(B1,B2,⋯⋯Bn) =
∑

a
KL(Pa‖Qa) =

∑

a

∑

b
Pablog

Pab
Qab

(4) 

The objective function Q is reduced by the gradient descent. Thus, 
the gradient of D-t-SNE is given by (5). 

∂Q
∂Ba

= 4
∑

b
(Pab − Qab)(Ba − Bb)

(
1 + ||Ba − Bb| |2

)− 1
(5) 

From Eq. (5), the update rule below is derived and is shown in (6). 

Y (e) = Y (e− 1) + n(∂C)/∂Y +α(t)B(e− 1) − B(e− 2)) (6) 

The overall algorithm for dimensionality reduction using D-t-SNE is 

presented in Algorithm I.  
Algorithm I: Distributed-t-Stochastic Neighbourhood Embedding 

Input the dataset:A =
{

f1, f2,⋯⋯fn
}
∈ RD, perplexity (perp), number-of-iterations 

(T), learning-rate (n) and momentum (a(t)) 
Begin 
Step 1: Calculate high dimensional similarities having perplexity (perp) through 

equation1. 
Step 2: Construct the matrix P through equation2. 
Step 3: Initialise B(o) from S

(
0, 10− 4|

)

Step 4: for t = 1 to T do 

Step 5: Calculate low dimensional similarities Qa,b =

(
1 + ||Ba − Bb| |

2
)− 1

∑
k∕=l

(
1 + ||Ba − Bb| |

2
)− 1 by 

equation3. 
Step 6: Construct the matrix Q 

Step 7: Calculate gradient 
∂C
∂B 

by equation5. 

Step 8: Set Be =Be− 1 +n
∂C
∂B 

+∝(t) (B(e− 1) − B(e− 2))

Step 9: End 
Step 10: Output: Low dimensional dataset B(T) ∈ Rd  

Initially, the dataset was used as the input. The high-dimensional simi-
larities that possess perplexity are then given in Step 1. This matrix was 
constructed based on Eq. (2). Subsequently, Steps 3 and 4 were per-
formed. Following this, low-dimensional similarities were computed 
based on Equation3. Then, the matrix Q is constructed. Following this, 
the gradient was computed based on Equation5. Finally, steps 8 and 9 
were performed to obtain a dataset with a low dimension. 

3.3. Classification: Hyper parameter tuned MLP 

MLP is a type of feed forward NN (FFNN), which transfers informa-
tion in one-way through NNs and its respective neurons are systemized 
in various parallel layers. An initial layer exists in the input layer in the 
various parallel layers. The final layer is termed the output layer, 
whereas the intermediate layers indicate hidden layers. When FFNNs are 
hidden later, this is called MLP. Moreover, the hypothesis space in-
dicates four-dimensional spaces encompassing several weights (i.e., the 
weight vector group). The delta rule (gradient descent) is selected as the 
training rule for finding the weight vector w→ which fits best with the 
training instances and the search approach within the hypothesis space 
is for discovering w→which has the ability to reduce the training error (E) 
for all the training instances. In accordance with the general definition 
of the training error, the hypothesis is computed as per (7). 

E(w→) =
1
2
∑

d∈D
(ed − od)

2 (7) 

In Eq. (7), D indicates the training instance set, ed represents the 
targeted result for a particular training instance, od and d represent the 
network results for the training instance. This was then customized into 
(8). 

E(w→) =
1
2
∑

d∈D
[(er − od) + (ed − od)]

2 (8) 

In Eq. (8), ed represents the maximum values for columns j and row i 
for afforded cells i, j in the similarity matrix. The overall algorithm of the 
hyper-parameter-tuned MLP is shown in Algorithm II.  

Algorithm II: Hyper parameter tuned MLP 

Input : The original similarity matix M, between two ontologies/schema 
and a set of training samples 
Output: Learned weight vector →

w 

Step 1:Intialisation of →
w

: Ta←0.25;

Step 2:For a←1 to a predefined iteration number do 
Step 3: Save training instances to a temporary variable; 
ΔTa←0;

(continued on next page) 
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(continued ) 

Algorithm II: Hyper parameter tuned MLP 

Step 4: While Training instances are not empty do 
d ← Get Current Training Instances ();
r←Obtain Row Number In Matrix(d);
c←Obtain Column Number In Matrix(d)
od←Calculate Network Output(d);
er←FindMaximum similarity In Column(c)
ΔTa←ΔTa + n[(er − od) +(ec − od) ]sid 

Step 5:Remove Current Training Instances ();
End 
Step 6:Ta←Ta + ΔTa;

Step 7:Restore training instances from temporary variables 
End 
Step 8:Output updated (w→)

Initially, the similarity matrix and training sample sets were used as the 
inputs. Then, initialization followed by Step 2 was performed. Subse-
quently, training instances were saved as temporary variables. If the 
training instances are non-empty, Step 4 is undertaken. Current training 
instances were removed. Finally, the training instances were restored 
from the temporary variables to obtain the learned weight vector. In 
addition, various parameters were considered by H-MLP and are shown 
in table-2. 

From Table 2, the number of inputs is 10; thus, the number of 
selected parameters is 10. Then, the number of hidden layers was 
[10,20,30]. In this case, 30 is selected as the optimal parameter. Simi-
larly, the number of hidden units in the initial hidden layer ([50, 70, 
100]) and ([50, 80, 100]) was 100. Subsequently, the best parameter of 
the hidden units in the second hidden layer ([100,150,200]) and ([100, 
150, 200]) is 150. The number of outputs was considered to be one. The 
selected parameters of the connection weight ([20, 30, 50]) and ([40, 
60, 80]) were 30. 

4. Results and discussion 

The results obtained from the execution of the proposed system are 
discussed in this section. The considered dataset, performance metrics, 
experimental results, and comparative analysis are also presented. The 
analysis confirms the efficiency of the proposed system compared with 
the conventional system in predicting the presence (affected) or absence 
(unaffected) of heart disease. 

4.1. Dataset description 

The research uses the HD datasets (Hungary + Cleveland +
Switzerland + VA long beach datasets) to predict the presence or 
absence of heart disease that encompasses 11 features. To date, this 

database has been used by various ML investigators. This HD dataset has 
been presented by integrating various datasets. These datasets are 
already available individually and are not combined before. When 
theses datasets are integrated, the resultant is the largest HD dataset 
which is accessible for research purposes. The HD dataset (Cleveland +
Switzerland + Hungary + VA long beach datasets) comprised of records 
of patients from the US, Hungary and Switzerland. It encompasses 11 
different major features. 

Some features of the HD dataset are enlisted in Table 3. 

4.2. Performance metrics 

The introduced work was assessed by a comparative analysis with 
respect to accuracy, sensitivity, Matthew’s correlation coefficient (MCC) 
precision, F1-score, specificity, and negative predictive value (NPV) to 
prove the effectiveness of the proposed system for heart disease 
prediction. 

Accuracy 
It is defined as the proportion of samples that are correctly classified 

into the overall samples and is indicated by (9). 

Accuracy =
TN + TP

TP+ TN + FP+ FN
(9) 

Sensitivity 
It is defined as the proportion of positive samples that are correctly 

classified to the overall positive instances and is indicated by (10). 

Sensitivity =
TP

TP+ FN
(10)  

5. Precision 

It is defined as the computation of the count of accurate positive 
detects to the overall count of positive prediction, and is given by (11). 

Precision =
TP

TP+ FP
(11) 

Specificity 
It is defined as the proportion of samples that are correctly classified 

as negative examples to the overall negative samples, and is indicated by 
(12). 

Specificity =
TN

TN + FP
(12) 

F1-Score 
It is also known as the F-measure which is defined as the harmonic 

mean of the precision and recall. It was used to determine measurement 

Table 2 
Parameters considered by H-MLP.  

Network name Incremental back 
propagation 

Batch back propagation 

Network topology 

Network type feed-forward fully 
connected network 

feed-forward fully 
connected network 

Selected 
Parameters 

No. of inputs 10 10 10 
No. of hidden 

layers 
[10,20,30] [10,20,30] [10,20,30] 

Hidden units in 
the 1st hidden 
layer 

[50,70,100] [50,80,100] 100 

Hidden units in 
the 2nd hidden 
layer 

[100,150,200] [100,150,200] 150 

No. of outputs 1 1 1 
Connection 

weight 
[20,30,50] [40,60,80] 30  

Table 3 
Features of Dataset.  

Features Depiction 

Gender/ 
sex 

Female is represented as 0Male is represented as 1 

trestbps RBP: Resting Blood Pressure on the admittance in hospital 
age Age: in years 
cp Type of the chest painTypical angina: value 0Atypical angina: value 

1Non angina: value 2Asymptomatic: value 3 
ST slope Peak-slope employing ST-segmentUp-slopping: value 0Flat: value 

1Down-slopping: value 2 
Rest ECG Outcomes of the resting electrocardiographsNormal: value 

0Possessing an ST-T wave abnormality (elevation of ST or the 
depression rate > 0.05 mV): value 1Finding possible or defined LVH 
(Left Ventricular Hypertrophy) through estes’ criteria: value 2 

chol Serum cholesterol in mg/dl 
fbs Blood-sugar > 120 mg/dlTrue: 1False: 0 
oldpeak ST depression prompted relying on rest 
thalach HRR: High Heart Rate accomplished 
exang Utilise prompted anginaYes: 1No: 0  
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efficacy. F1-score ranges between 0 and 1, where the worst value rep-
resents 0 and the best value is 1. This is given by (13). 

F1 − Score =
2(TP)

2TP+ FN + FP
(13) 

MCC (Matthews correlation Coefficient) 
The correlation coefficient between the perceived and detected bi-

nary classifications ranges between 1 and − 1, where − 1 indicates the 
worst performance and + 1 represents the best performance. This is 
given by (14). 

MCC =
(TP*TN) − (FP*FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

√ (14) 

NPV (Negative predictive Value) 
It is the proportion of accurately classified positive samples to the 

overall identified negative samples and is given by (15). 

NPV =
TN

TN + FN
(15)  

Fig. 3. Individual Feature Representation.  

Fig. 4. Bar-plot for representing different dataset features.  
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5.1. Experimental results 

The results obtained after implementation of the proposed system is 
discussed in this section. 

5.1.1. Representation of each feature of the dataset 
The heartbeat signals obtained after implementation for each feature 

set (age, gender, cp, rest BP, cholesterol, fasting sugar, rest ECG, heart 
rate, angina, old peak, and ST slope) of the HD dataset are shown in 
Fig. 3. 

In addition, a bar plot for individual features is presented in Fig. 4 to 

provide a comprehensive view of the empirical outcomes. 

5.1.2. Correlation matrix 
In general, the correlation matrix indicates a table that explores 

correlation and is best utilized for variables that explore linear re-
lationships among one another. The best data fit is visually indicated by 
the scatter plot shown in Fig. 5. This matrix comprises rows and columns 
that explore the variables (features) in the dataset. 

5.1.3. Plots for varied features 
The number of diseases was plotted by considering sex with respect 

Fig. 5. Correlation plot.  

Fig. 6. Sex vs age Count plot.  
Fig. 7. Target vs Count plot.  
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to age, as shown in Fig. 6. Both sexes were found to be equally affected 
by the disease. In addition, the number of patients with and without 
diseases were computed and are plotted in Fig. 7. From Fig. 7, it can be 

seen that the absence of disease is above 500, and the presence of the 
disease is nearly 600. 

Fig. 8. Confusion Matrix.  

Fig. 9. Performance analysis with respect to model accuracy.  

Fig. 10. Performance analysis with respect to model loss.  
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5.1.4. Confusion matrix 
The confusion matrix indicates a table that is often utilized to 

describe the classifier’s performance on the test dataset for which true 
values are known. Accordingly, confusion matrix for the proposed 
classifier is plotted and the obtained results are shown in Fig. 8. 

Fig. 8 shows that the proposed model correctly predicted 210 normal 
cases and 249 attack cases. In contrast, it misclassified one case of a 
normal patient as an attack. In addition, 6 attack patients were mis-
classified as normal. Since the correctly classified rate was higher than 
the misclassified outcomes, the proposed system was found to be effi-
cient in predicting the disease. 

5.1.5. Performance analysis 
The performance of the proposed system was analyzed with respect 

to the model accuracy, loss, and receiver operating characteristic (ROC). 
The analytical outcomes of the model accuracy are shown in Fig. 9, and 
the results of the model loss are shown in Fig. 10. 

From the analytical results, it was found that the accuracy of the 
trained model was enhanced for each epoch (as shown in Fig. 9). 
However, the loss of the trained model was found to be minimal for 
individual epochs (as shown in Fig. 10). The high accuracy and low loss 

of the introduced system indicate the efficiency of the introduced sys-
tem. The analytical outcomes in terms of ROC are shown in Fig. 11. 

Hence, the analysis of the performance of the proposed system with 
respect to accuracy, loss and ROC confirms its effectiveness. The pro-
posed H-MLP could solve classification issues, therefore, it affords better 
outcomes. 

5.2. Comparative analysis 

The proposed system is compared with conventional systems to 
evaluate the efficacy of the introduced system compared to traditional 
systems. SVM, LR, DT, NB, RF, and KNN are the existing studies 
considered for analysis. The results are shown in Table 4. 

From the results, it was found that various systems had different 
accuracies. Accordingly SVM (91.18%), LR (86.13%), DT (90.34%), NB 
(85.71%), RF (94.96%), and KNN (88.66%), whereas the proposed 
system showed 96.68% accuracy rate. The results are presented in 
Table 4. 

From the results, it is evident that the proposed system has a higher 
accuracy rate (96.68%) than that for conventional systems for predicting 
heart disease. In addition, various other parameters, such as sensitivity, 
specificity, precision, F1-score, and MCC were considered for the anal-
ysis. The results are presented in Table 5. This is shown graphically in 
Fig. 12. 

The results showed that the accuracy of the proposed system was 
96.68%, sensitivity rate was 96.79%, specificity was 96.51%, precision 
rate was 97.27%, F1-score was 96.89%, and MCC exposure was 93.24%. 
The outcomes of the conventional methods are lesser than those of the 
proposed system. For instance, the KNN exhibited 88.66% accuracy 
(Table 5). However, it is lesser than that of the introduced system that 
explores the efficacy of the proposed method. Another comparative 
analysis was conducted by considering different existing methods. The 
majority vote with NB, BN (Bayes Net), RF and MLP, linear SVM + linear 

Fig. 11. Performance analysis with respect to ROC.  

Table 4 
Analysis of existing [28] and proposed system in terms of 
accuracy.  

Methods Accuracy (%) 

SVM  91.18 
Logistic Regression  86.13 
Decision Tree  90.34 
Naïve Bayes  85.71 
Random Forest  94.96 
KNN  88.66 
Proposed  96.68  

Table 5 
Analysis of existing [28] and proposed system in terms of various performance metrics.  

Comparative Analysis 

Performance measurement parameters SVM LR DT NB RF KNN Proposed 

Accuracy (%)  91.18  86.13  90.34  85.71  94.96  88.66  96.68 
Sensitivity (%)  86.92  84.11  91.59  83.18  91.59  83.18  96.79 
Specificity (%)  94.66  87.79  89.31  87.79  97.71  93.13  96.51 
Precision (%)  89.86  87.12  92.86  86.47  93.43  87.14  97.27 
F1-score  92.19  87.45  91.05  87.12  95.52  90.04  96.89 
MCC  82.21  71.96  80.63  71.09  89.88  77.13  93.24  
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and RBF (radial basis function) SVM, HRFLM, NB, AES (Advanced 
Encryption Standard), ANN and Fuzzy AHP (Analytical Hierarchy Pro-
cess), and randomized decision tree ensemble have been traditionally 
considered for analysis. Table 6 presents the results. 

The results revealed varied outcomes have been explored. Accord-
ingly, the majority vote with NB, BN (Bayes Net), RF, and MLP 
(85.48%), linear SVM + linear and radial basis function (RBF) SVM 
(92.22%), HRFLM (88.4%), NB, AES (Advanced Encryption Standard) 
(89.77%), ANN and fuzzy AHP (analytical hierarchy process)(91%), and 
randomized decision tree ensemble (93%). In contrast, the proposed 
system showed a high accuracy rate of 96.68% than that for conven-
tional systems. In addition, analysis is carried out by considering 
traditional methods such as the rule-based classifier, PSO with SVM, 
PPCA, Relief + LR, mRMR (minimal redundancy and maximal rele-
vance) + NB, LASSO (shrinkage and selection operator) + SVM, HRFLM, 
factor analysis of mixed data (FAMD) + RF, and L1 linear SVM + L2 

linear SVM. Sensitivity, accuracy and specificity were considered as the 
performance metrics. The outcomes are presented in Table 7. 

6. Conclusion 

The main intention of this study was to predict heart disease using 
DM techniques. In this study, DL and ML methods were utilized in 
various processes. Introduced deep CNN models carried out feature 
extraction by eliminating irrelevant data through effective learning, D-t- 
SNE minimized feature dimensionality to enhance the classifier per-
formanceand the proposed H-MLP classified the absence (unaffected) 
and presence (affected) of the disease. The performance was confirmed 
by comparison with three traditional studies (Tables 5, 6, & 7) in terms 
of the significant metrics. The results showed that H-MLP performed 
classification with a better accuracy than conventional methodologies at 
96.68% for the HD dataset. The maximum accuracy attained by this 
system is highly appropriate for diagnosing heart diseases. The limita-
tion of this work is that the proposed method has not been provisioned 
for real time applications. In the future, several combinations of DM 
methods can be employed to further improve the prediction rate for 
diagnosing heart disease. For example, other deep learning techniques 
like Deep Neural Networks (DNN), Long Short Term Memory (LSTM) etc 
for feature extraction and Kernel PCA (Principal Component Analysis) 
for dimensionality reduction may be explored. 
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Fig. 12. Comparative analysis with respect to performance metrics [28].  

Table 6 
Analysis with respect to performance metrics [29].  

Method Accuracy 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

F1 
Score 

Majority vote with NB, 
BN, RF, and MLP 

85.48 NA NA NA 

Linear SVM + Linear & 
RBF SVM 

92.22 NA 82.92 NA 

HRFLM 88.4 90.1 92.8 90 
NB and AES 89.77 NA NA NA 
ANN and Fuzzy_AHP 91 NA NA NA 
Randomized Decision 

Tree Ensemble 
93 96 91 93 

Proposed 96.68 97.27 96.79 96.89 
* NA: Not Available      

Table 7 
Analysis with respect to performance metrics [30].  

Method Accuracy (in %) Sensitivity (in %) Specificity (in %) 

Rules based classifier 86.7 NA NA 
PPCA 82.18 75 90.57 
PSO with SVM 84.36 NA NA 
Relief + LR 89 77 98 
mRMR + NB 84 77 90 
LASSO + SVM 88 75 96 
Proposed 96.68 96.79 96.51 
* NA: Not Available     
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