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A B S T R A C T

Swarm-intelligence (SI) algorithms have received great attention in addressing various binary optimization
problems such as feature selection. In this article, a new time-varying modified Sigmoid transfer function with two
time-varying updating schemes is proposed as the binarization method for particle swarm optimization (PSO),
grey wolf optimization algorithm (GWO), whale optimization algorithm (WOA), harris hawk optimization (HHO),
and manta-ray foraging optimization (MRFO). The new binary algorithms, BPSO, BGWOA, BWOA, BHHO, and
BMRFO algorithms are utilized for solving the descriptors selection problem in supervised Amphetamine-type
Stimulants (ATS) drug classification task. The goal of this study is to improve the speed of convergence and
classification accuracy. To evaluate the performance of the proposed methods, experiments were carried out on a
specific chemical dataset containing molecular descriptors of ATS and non-ATS drugs. The results obtained
showed that the proposed methods’ performances on the chemical dataset are promising in near to optimal
convergence, fast computation, increased classification accuracy, and enormous reduction in descriptor size.
1. Introduction

Amphetamine-type stimulant (ATS) drugs are one of the popular
synthetic drugs of abuse. These substances were originally developed for
pharmacological research, but, the underground chemist keep modifying
the chemical structure of these compounds to evade legal regulation. The
novelty of these substances makes them undetectable by traditional drug
testing methods [1].

Nowadays, there are different devices and test kits available in the
market for use in ATS drug testing [2–4]. However, several drawbacks
were discovered within these methods such as long preparation and
execution time, costly apparatus, and equipment, complex testing pro-
cess, requiring well-trained technicians, unreliable and inconsistent
outputs from different test kits, and outdated analytical methods. At
present, computational methods have been shown as the promising
techniques in the cheminformatics field such as in drug design and
discovery [5], drug-non drug classification [6], molecular similarity
.
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analysis [7], toxicity prediction [8,9], and quantitative
structure-activity/property relationships (QSAR/QSPR) analysis [10].
Computational methods also offer much cheaper and faster procedures.
Molecular descriptors are an important component that has provided
support for many modern computational models. Molecular descriptors
are numerical indexes encoded from molecular structure representation
of different dimensionalities (0D, 1D, 2D, 3D, or 4D). The higher the
dimensionality the more information about the molecular features is
stored in the descriptors.

Due to the rapid increment of chemical data, machine learning has
become a promising tool to process big data at high volume, veracity, and
velocity and with enormous flexibility [11]. In a previous study, Pratama
et al. proposed an approach for ATS drug identification by employing a
newly developed 3D image pre-processing technique called 3D Exact
Legendre Moment Invariants (3D ELMI) as a feature extractor algorithm
and several classification algorithms [12,13]. 3D ELMI is a molecular
descriptor algorithm that is used to calculate descriptors of 7190 drug
il 2022
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Table 1
Recent works on SI-based descriptors selection in the cheminformatics domain.

Ref Swarm Intelligence Algorithms Application

[5] Harris hawks optimization (HHO) algorithm QSAR modeling
[16] Binary grasshopper optimization algorithm

(BGOA)
QSAR modeling

[29] Binary particle swarm optimization algorithm
(BPSO) and genetic algorithm (GA)

QSAR modeling

[30] Binary particle swarm optimization algorithm
(BPSO), binary whale optimization algorithm
(BWOA), and binary manta-ray optimization
(BMRFO)

Drug classification

[31] Chaotic dragonfly algorithm (CDA) Drug classification
[32] Binary pigeon optimization algorithm (BPO) QSAR/QSPR

classification modeling
[33] Hybrid Harris hawks optimization with cuckoo

search and chaotic map (CHHO–CS)
QSAR modeling

[34] Seagull optimization algorithm (SOA) QSAR modeling

Table 2
Standard and commonly used transfer functions in the literature.

(a) S-shape transfer functions (b) V-shape transfer functions

Name Formulation Name Formulation

S1 SðxÞ ¼ 1
1þ e�x

V1 VðxÞ ¼ jtanhðxÞj

S2 SðxÞ ¼ 1
1þ e�2x

V2
VðxÞ ¼

���erf� ffiffiffi
π

p
2

x
����

S3 SðxÞ ¼ 1
1þ e�x=2

V3
VðxÞ ¼

��� sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
����

S4 SðxÞ ¼ 1
1þ e�x=3

V3
VðxÞ ¼ ��2

π
arctan

�π
2
x
�����

S5 SðxÞ ¼ 1
1þ e�10ðx�0:5Þ
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compounds (equal size of ATS and non-ATS drugs). It generates 1185
descriptors for each drug compound and is then used as input to the
classification algorithms to perform the identification task. The experi-
mental results found that the random forest (RF) classifier is superior in
achieving the highest classification accuracy. According to Ref. [14],
molecular classification involved three steps: feature extraction, feature
selection, and classification. This study aims to improve the ATS drug
classification performance by carrying out the feature selection as a
data-preprocessing step before executing the classification task.

The existence of new molecular descriptors that generate high-
dimensional descriptors has made the feature or descriptor selection
step required in computational modeling. Descriptor selection is a well-
known non-polynomial (NP) hard combinatorial search problem as the
number of possible feature subsets grows exponentially with the increase
of dimensionality. The traditional feature selection techniques are inef-
ficient to handle medium or large descriptors or datasets. Therefore, the
SI algorithm is one of the core technology to address this issue. SI algo-
rithm is classified as a population-based optimization algorithm having
several advantages [15]:

� Ease of implementation.
� Fewer operators compared to evolutionary approaches.
� Fewer parameters to tune.
� Retain information about the search space throughout the iteration.
� Regularly use memory to save the best solution obtained so far.

Some of the successful works that implemented SI algorithms in the
descriptors selection problem are outlined in Table 1.

Descriptor selection has become popular research in the chem-
informatics domain where researchers attempt to identify the lowest
feasible number of descriptors that can provide good predictive perfor-
mance [16]. The research area of incorporating and implementing SI
algorithms to the feature selection problem is still active to date. Ac-
cording to the No Free Lunch (NFL) theorem, there is no universal al-
gorithm that applies to all optimization problems [17]. Therefore, there
is always an opportunity to come up with new metaheuristic-based
feature selection algorithms to enhance the process of solving feature
selection problems. Numerous new approaches are originated in the
literature [18–22]. Motivated by this, this research proposed ten new
SI-based feature selection algorithms to obtain the significance and
discriminative 3D ELMI descriptors to enhance the classification
performance.

The initial version of the SI algorithm produces a continuous solution
and is only applicable to solve continuous optimization problems.
Therefore, the binary version of the SI algorithm is mandatory to
generate a binary solution for addressing binary optimization problems.
Examples of binary optimization problems are feature selection [23], and
traveling salesman problem (TSP) [24]. The common practice is to use
2

the transfer function as a conversion method [25–27]. The imple-
mentation of a transfer function is straightforward and does not increase
the complexity of the original algorithm. In addition, the utilization of a
suitable transfer function will provide a good balance between the
exploration and exploitation phases in the SI algorithm resulting in a
better convergence and good classification accuracy. Several popular
transfer functions used in the literature are listed in Table 2.

In the present research, we introduced a time-varying modified Sig-
moid transfer function with a linear time-varying updating strategy. We
also adopted the transfer function that we have proposed in Ref. [28]. To
evaluate the efficiency of the particular transfer functions, we integrate
them into five continuous SI algorithms: particle swarm optimization
algorithm (PSO), whale optimization algorithm (WOA), grey wolf opti-
mization algorithm (GWO), harris hawk optimization algorithm (HHO),
and manta-ray foraging optimization algorithm (MRFO). The character-
istics of these SI algorithms are summarized in Table 3 while Table 4 and
5 present the transfer functions used to produce their binary versions.

In a few words, this paper introduces a new approach for tackling
descriptors selection problem based on the PSO, BWO, GWO, HHO, and
MRFO algorithms, and its main contributions can be summarized as
follows:

1. A novel time-varying modified Sigmoid transfer function with a linear
(TV1) time-varying updating scheme is introduced as a binarization
technique for the metaheuristic algorithm.

2. Ten new binary variants of PSO, BWOA, GWO, HHO, and MRFO al-
gorithms are developed by employing TV1 and our recently proposed
transfer function (TV2) in Ref. [28]: BPSOTV1, BPSOTV2, BWOATV1,
BWOATV2, BGWOTV1, BGWOTV2, BHHOTV1, BHHOTV2, BMRFOTV1,
BMRFOTV2.

3. These proposed SI algorithms are adapted as a feature search for
wrapper feature selection in a supervised binary classification task
that differentiates ATS and non-ATS drugs.

4. The final results were assessed based on different performance met-
rics, including the average fitness, average classification accuracy,
average fitness, average number of selected features, as well as the
respective standard deviation values.

5. The significance of the proposed algorithms was validated against
competitive algorithms using a Wilcoxon's rank-sum non-parametric
statistical test at a significance level of α ¼ 0.05.

There are several limitations of this study which include:

1. The transfer functions are validated on five SI-based optimization
algorithms only.

2. The algorithms are used to solve the descriptors selection problem in
the drug analysis domain.

3. Only one chemical dataset is used for algorithms evaluation.
4. This study does not apply any data preprocessing to the dataset.

The remainder of this paper is structured as follows. Section 2 ex-
plains the concepts of the proposed new transfer functions and their



Table 3
Nature-inspired metaheuristic algorithm within SI category [35] is employed in the present study.

Algorithm Acronym Subcategory Type Social behavior method Year Ref.

Particle swarm optimization PSO Movement Flying It is based on a group of birds randomly searching for food in the area. 1995 [36]
Grey wolf optimization GWO Terrestrial Foraging It mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. 2014 [15]
Whale optimization
algorithm

WOA Aquatic Foraging It mimics the bubble-net feeding in the foraging behavior of the humpback whales: 2016 [37]
1) encircling prey
2) bubble-net attacking method
3) search for prey

Harris hawk optimization HHO Flying Foraging It is inspired by the cooperative behaviors and chasing style of Harris hawks in nature
called surprise pounce.

2019 [38]

Manta ray foraging
optimization

MRFO Aquatic Foraging It mimics three unique foraging strategies of manta rays: 2020 [39]
1 chain foraging,
2 cyclone foraging,
3 somersault foraging

Table 4
Existing S-shaped and Time-varying S-shaped transfer functions used within SI algorithm in feature selection applications.

Algorithms Ref. Standard Time-varying Remarks

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

BWOA [40] ✓ ✓ ✓ ✓ –

[41] ✓ –

[42] ✓ Linear, non-linear, and shape decreasing time-varying
update schemes.

BHHO [43] ✓ –

BGWO [44] ✓ –

BPSO [32] ✓ ✓ –

[46] ✓ –

BMRFO [46] ✓ –

[47] ✓ ✓ ✓ ✓ ✓ –

Proposed BPSO, BGWO, BWOA, BHHO and
BMRFO

✓ Linear and non-linear time-varying update schemes.

Table 5
Existing V-shaped and Time-varying V-shaped transfer functions used within SI algorithms in feature selection applications.

Algorithms Ref. Standard Time-varying Remarks

V1 V2 V3 V4 V1 V2 V3 V4 –

BWOA [48] ✓ ✓ ✓ ✓ –

BHHO [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

BPSO [32] ✓ ✓ –

BMRFO [47] ✓ ✓ ✓ ✓ –

BHHO [49] ✓ ✓ ✓ ✓ –
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implementation in PSO, GWO, WOA, HHO, and MRFO algorithms. Sec-
tion 3 describes the necessary material and methods used in the experi-
ments. Results and discussions are presented in Section 4. Finally, Section
5 concludes and highlights some future works.

2. The binary version of PSO, GWO, WOA, HHO, and MRFO

[23,24,50]. In BPSO, BWOA, BGWOA, BHHO, and BMRFO, the search
agents (solutions) update their positions continuously to any point in the
search space based on the best search agent discovered so far. Then the
real position of search agents is converted to binary values using the
proposed time-varying modified Sigmoid transfer function. This tech-
nique forces search agents to move in a binary space by probability
definition which updates each element (feature) in the solution (features
subset) to 1 (selected feature) or 0 (not selected feature) [51].

2.1. Time-varying modified Sigmoid transfer function

In this work, BGWO, BWOA, BHHO, and BMRFO employed a time-
varying modified Sigmoid transfer function proposed by our previous
research [28] which can convert all real values of position into proba-
bility values [0, 1]. The transfer function formulation is shown in
Equation (11):
3

Sigmoid
�
Agentdi ðtþ 1Þ�¼ 1

�10

�
Agentd

i
ðtþ1Þ�0:5

� (11)
1þ e Tv

where Agent, t, i, d represent the search agent's position, current iteration
number, order of the agent in the population, and search space dimen-
sion. Tv denotes as a control parameter of the time-varying that decreases
during iterations. After converting the position to probability values the
position vector can be updated with the probability of its position by
Equation (13) which was proposed by Kennedy and Eberhart in Ref. [52]:

Agentdi ðtþ 1Þ¼
(
1; if rand < Sigmoid

�
Agentdi ðt þ 1Þ�

0; otherwise
(12)

rand is a random number drawn from the uniform distribution ½0; 1�.
For BPSO, the transfer function is applied to the velocity, v, to convert

to a probability value:

Sigmoid
�
vdi ðtþ 1Þ�¼ 1

1þ e�10ðvdi ðtþ1Þ=Tv�0:5Þ (13)

Finally, the new position is updated using Equation (14).



Table 6
Summary of 3D ELMI molecular descriptors dataset.

Dataset No. of attribute No of. class attribute No. of instance

3D ELMI 1186 1 7190
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Agentdi ðtþ 1Þ¼ 1; if rand < Sigmoid
�
vdi ðt þ 1Þ�

(14)
(
0; otherwise

In this work, two time-varying updating schemes are utilized as
follows:

The linear time-varying updating strategy, TV1 is presented in
Equation (15) was employed in several works in the literature [32,42,49,
53]:

τ¼ τmax þ ðτmin � τmaxÞ
�
Itrtþ1

Itrmax

	
(15a)

The non-linear time-varying updating strategy, TV2 is presented in
Equation (16) and was employed in Refs. [28,42]:

τ¼ τmax þ ðτmin � τmaxÞ
�
Itrtþ1

Itrmax

	α

(16)

where τmin, τmax are the minimum and maximum values of the control
parameter, Itrtþ1 is the current iteration while Itrmax is the maximum
number of iterations. In this study, τmin, τmax and α are set to 4 [49], 0.1,
and 0.5 [42].

The update strategy for time-varying over TF is very critical to pre-
vent entrapment in local optima. This strategy, on the other hand, is used
to search for the global optima by exploring multiple regions in the
search space.

2.2. Fitness function

The two aims of feature selection are to obtain a lower number of
selected features and achieve higher classification accuracy [54]. Since a
wrapper-based feature selection technique is used, a learning algorithm
(classifier) is involved in the evaluation process. The best feature subset is
the one with less number of selected features and a small classification
error rate. The fitness function used in the feature selection technique is
designed to have a balance between the two criteria. Recommended
solutions are evaluated using the fitness function in Equation (15):

↓ Fitness¼ α � CE þ β � jFselectj
jFactualj (15b)
Fig. 1. Framework of the proposed binary SI-bas
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where CE represents the classification error rate calculated by the k-
Nearest Neighbour (k-NN) classifier [55] with the Euclidean distance
metric and k is set to 5 [41,44,56,57]. jFselect j is the length of the selected
feature subset, and jFactualj are the original feature size in the dataset, α;
and β are the two parameters corresponding to the importance of clas-
sification quality and subset length. α 2 ½1; 0� and β ¼ ð1�αÞ are
adopted from Refs. [58,59]. As the classification performance is consid-
ered the most important metric in this work, thus α is seted to 0.99, thus β
is 0.01 adopted from literature [45,58,60,61].

3. Method and material

3.1. Dataset

In this study, a special chemical dataset was adopted in the experi-
ments. The dataset contains 1187 descriptors to represent the 3D mo-
lecular structure of 3595 ATS dan 3595 non-ATS drugs compounds. The
descriptors were generated by using a novel 3D Exact Legendre Moment
Invariant molecular descriptors algorithm that was developed by Pra-
tama in Refs. [12,13]. The descriptors comprise molecule id, 1185
moment invariants values, and a binary class label, 0 (non-ATS drug) and
1 (ATS drug). During experimentation, the molecule id descriptor is
excluded. The summary of the dataset is presented in Table 6.

3.2. Methodology

This study presents an approach for improving ATS and non-ATS drug
classification by proposing 10 novel binary SI algorithms to optimize the
wrapper feature selection algorithms in selecting significance descriptors
to enhance the classification performance. As illustrated in Fig. 1, the
process begins with inputting the whole descriptors from a certain data
partitioned into the proposed algorithms to perform the feature selection
task. The descriptors searching and selection processes are executed
iteratively and terminate when it reaches the maximum number of iter-
ation. Since the wrapper method is utilized, the k-NN classifier is adopted
to evaluate the selected descriptors subset. k-NN is a simple, easy to
implement, and fast classification algorithm [56,62]. The classification
error rate obtained by the k-NN classifier is transmitted to the proposed
algorithms to obtain the fitness rate of the selected descriptors using the
fitness function formulation in Equation (16). The small fitness rate in-
dicates that significant features have been selected. Finally, the selected
optimal descriptors are evaluated using the same classifier to obtain the
final classification accuracy. The obtained results are then used for
validation and comparison with other comparative algorithms.
ed wrapper descriptors selection technique.



Table 7
Parameter settings.

Algorithm Parameter Value Ref.

All Search agent size, N 15
Iteration length, tMax 150
No. of runs, R 10
Problem dimension,
D

1185

Search domain [0,1]
α in the fitness
function

0.99 [45,58,60,
61]

β in the fitness
function

0.01

BWOA. BWOA-TV2, BWOA TV1,
BWOA TV2

a! 2 to 0 [46]

BPSO, BPSO TV1, BPSO TV2 Inertia weight, w 0.9 to
04

[46]

Cognitive factor, c1 2
Social factor, c2 2
Maximum velocity,
vmax

6

Minimum velocity,
vmin

�6

bGWO2, BGWO TV1, BGWO TV2 – – [44]
BHHO, BHHOTV4, BHHO TV1,
BHHO TV2

Energy, E 2 to 0 [49]
β in the levy flight
pattern

1.5

BHHOTV4 τmax 4 [49]
τmin 0.01

BMRFO, BMRFO TV1, BMRFO TV2 Somersault factor, S 2 [46]

Fig. 2. Convergence curves of proposed BPSOTV1 and BPSOTV2 algorithms with
other binary variants of PSO algorithm.

Fig. 3. Convergence curves of proposed BWOATV1 and BWOATV2 algorithms
with other binary variants of WOA algorithm.

Fig. 4. Convergence curves of proposed BGWOTV1 and BGWOTV2 algorithms
with other binary variants of GWO algorithm.
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3.3. Parameter settings

In the experimental works, all algorithms are executed ten times with
different random seeds. The usage of random seed is for reproducibility
where all algorithms will start with the same random number and data
partitions. For experimentation, the stratified hold-out validation strat-
egy is implemented with data partitioned to 80% training set and 20%
testing set. This partitioning was used in various previous works in the
literature [54,56]. The training set is used to train the classifier during
the optimization process while the testing set is used to evaluate the
selected features. The experimental results are displayed as the average
metrics achieved from ten independent runs to obtain statistically valid
results. All algorithms are developed using Matlab R2021a that runs on a
PC with an Intel Core i7-6700 machine, 3.40 GHz CPU with Windows 10
operating system, and 16 GB of RAM. Table 7 outlines the parameter
settings of the algorithms.
5

3.4. Performance measurement

Various metrics are applied to compare the proposed algorithms that
including the average fitness, the standard deviation of fitness, the
average accuracy, the standard deviation of accuracy, and the average
length of the selected feature subset. The same classifier is utilized to
perform the final classification using the optimal descriptors subset
selected by all optimization algorithms. Furthermore, this study conducts
a non-parametric statistical test, the Wilcoxon signed-rank test [63] with
a significant level of 0.05 [64] on the proposed algorithm, and the
comparative algorithms to verify whether there are significant differ-
ences in their performance. Also, a qualitative assessment is performed
by analyzing the convergence behavior of the proposed algorithms with
its comparative algorithms based on convergence curves visualized in
Figs. 2, 3, 4, 5 and 6.

4. Experimental results and discussion

Table 8 present the detailed experimental results. The average fitness
value achieved by the proposed algorithms is much lower when



Fig. 5. Convergence curves of proposed BHHOTV1 and BHHOTV2 algorithms
with other binary variants of HHO algorithm.

Fig. 6. Convergence curves of proposed BMRFOTV1 and BMRFOTV2 algorithms
with other binary variants of MRFO algorithm.

Table 8
Performance results of ten proposed algorithms their existing binary variants.

Algorithms Avg. Fitness Avg.
Features

Avg. Accuracy Avg. CT

BPSO TV1 0.17428
(0.00633)

44 82.43
(0.63902)

222.68

BPSO TV2 0.17124
(0.00560)

60 82.75
(0.56325)

320.23

BPSO2 [51,52] 0.20120
(0.00626)

583 80.17
(0.63161)

3645.66

BPSO [30] 0.17851
(0.00876)

81 82.04
(0.87965)

460.12

BWOATV1 0.17170
(0.00985)

74 82.72
(1.00258)

214.51

BWOA TV2 0.16664
(0.01164)

102 83.25
(1.18008)

354.26

BWOA [30,41] 0.18798
(0.00924)

436 81.38
(0.88842)

2641.15

BWOA-TV2
[42]

0.20841
(0.00511)

720 79.56
(0.60099)

4776.69

BGWO TV1 0.17164
(0.00804)

107 82.75
(0.83448)

194.58

BGWO TV2 0.16532
(0.00792)

125 83.41
(0.81349)

338.77

bGWO2 [44] 0.17078
(0.00749)

250 82.96
(0.74250)

1697.96

BHHO TV1 0.17036
(0.00730)

69 82.85
(0.73871)

373.06

BHHO TV2 0.16912
(0.00564)

78 82.98
(0.57517)

529.60

BHHOTV4 [49] 0.19952
(0.00774)

34 79.87
(0.78627)

163.56

BMRFO TV1 0.16374
(0.00858)

93 83.54
(0.87802)

830.85

BMRFO TV2 0.16584
(0.00720)

97 83.33
(0.75863)

1093.78

MRFOv3 [47] 0.17883
(0.00599)

94 82.02
(0.59433)

2050.04

BMRFO [30] 0.18218
(0.00937)

149 81.72
(0.92299)

3117.68
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compared with their existing binary version except for BGWO TV1. It is
confirmed by the convergence curves illustrated in Figs. 2–6. This dis-
closed the potential of TV2 in improving the convergence of BPSO,
BWOA, BGWO, and BHHO. Meanwhile, TV1 is capable to help the
BMRFO algorithm to escape from local optima more efficiently.
BMRFOTV1 is seen to provide the lowest fitness among all algorithms
followed by BGWOTV2 and BWOATV2.

By observing the combo bar charts in Fig. 7 most of the proposed
algorithms have selected fewer descriptors than their existing binary
versions compared. BHHOTV4 is seen to select the smallest descriptors
however does not able to obtain good classification accuracy. The pro-
posed algorithms are shown to be outstanding in reaching a near-optimal
solution with a low fitness rate, yielding good classification accuracy
with the small size of selected descriptors except for BGWO TV1 which
achieved lower accuracy than bGWO.

Fig. 8 portrays another remarkable advantage of the proposed ap-
proaches in accelerating convergence speed when only consumes a short
computational time than the comparative algorithms. This reveals the
potential of the proposed techniques in evading stagnation and getting
trapped in local optima.
6

Fig. 9 visualized and compared the performance between TV1 and
TV2 more precisely in terms of accuracy, size of selected descriptors, and
computational time. BMRFO achieved better classification accuracy with
TV1 while the rest with TV2. TV1 is seen to select fewer descriptors
compared to TV2. TV1 also provides faster convergence in all algorithms.

Table 9 outlines the average classification accuracies achieved by
three classifiers: k-NN (k ¼ 5) with Euclidian distance, support vector
machine (SVM) with Radial Basis Function (RBF), and random forest
(RF) with the original dataset. The results indicate that RF is the best
classifier after achieving 83.11% classification accuracy. The drawback
of the RF classifier is it required a long computation time compared to
other classifiers. Overall, BWOATV2, BGWOTV2, BMRFOTV1, and
BMRFOTV2 have shown great performance in determining relevant de-
scriptors that successfully increased the classification accuracy and beat
the best classification result obtained by the RF classifier. The best
performer algorithm is bestowed by BMRFOTV1 after achieving 83.54%
average classification accuracy with 93 average selected descriptors. It is
seen to have improved the classification accuracy of k-NN, SVM(RBF),
and RF by 32.84%, 22.12%, and 0.52% by using only 7.85% of the
original descriptors. Moreover, the reduced descriptors enhanced the
classifier learning and prediction time that only requires 0.32 s.

A Wilcoxon signed-rank test based on the average classification ac-
curacy is conducted to validate whether there is a significant difference
between proposed binary algorithms with existing ones. If the p-value is
greater or equal to 0.05, then the null hypothesis that there is no sig-
nificant difference is accepted. If the p-value is lower than 0.05, then the
null hypothesis is rejected. Take note that a p-value that is equal to or
larger than 0.05 is underlined. By observing Table 10, BPSOTV2 shows a



Fig. 7. Graphs of the average accuracy versus the average number of selected descriptors.

Fig. 8. Comparison results based on average computational time by proposed and comparative algorithms.
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Fig. 9. Comparison results of average accuracy and average number of selected
features between proposed time-varying binary SI algorithms with different
update strategies.

Table 9
Classification accuracies before and after implementation of BMRFOTV1 feature
selection algorithm.

Dataset (No.
of features)

Original (1185 descriptors) BMRFOTV1 (93 descriptors)

Classifier Avg.
accuracy
(%)

Avg.
classification
time (s)

Avg.
accuracy
(%)

Avg.
classification
time (s)

k-NN 62.89 3.23 83.54 0.32
SVM(RBF) 68.41 21.62
RF 83.11 111.57

Table 10
Wilcoxon signed-rank test result for binary variants of PSO.

Algorithms BPSO2 BPSO BPSOTV1 BPSOTV2

BPSO2 – 0.002 0.002 0.002
BPSO 0.002 – 0.444 0.014
BPSOTV1 0.002 0.444 – 0.050
BPSOTV2 0.002 0.014 0.050 –

Table 11
Wilcoxon signed-rank test result for binary variants of WOA.

Algorithms BWOA BWOA-TV2 BWOATV1 BWOATV2

BWOA – 0.006 0.032 0.006
BWOA-TV2 0.006 – 0.006 0.002
BWOATV1 0.032 0.006 – 0.084
BWOATV2 0.006 0.002 0.084 –

Table 12
Wilcoxon signed-rank test result for binary variants of GWO.

Algorithms bGWO2 BGWOATV1 BGWOATV2

bGWO2 – 0.492 0.322
BGWOTV1 0.492 – 0.009
BGWOTV2 0.322 0.009 –

Table 13
Wilcoxon signed-rank test result for binary variants of HHO.

Algorithms BHHOTV4 BHHOTV1 BHHOTV2

BHHOTV4 – 0.006 0.006
BHHOTV1 0.006 – 0.386
BHHOTV2 0.006 0.386 –

Table 14
Wilcoxon signed-rank test result for binary variants of MRFO.

Algorithms MRFOv3 BMRFO BMRFO TV1 BMRFO TV12

MRFOv3 – 0.492 0.002 0.002
BMRFO 0.002 – 0.006 0.002
BMRFOTV1 0.002 0.006 – 0.386
BMRFOTV2 0.002 0.002 0.386 –

Table 15
P-values of Wilcoxon signed-rank test based on
average classification accuracy between
BMRFOTV1 with other SI algorithms.

Algorithms p-value

bGWO2 0.083
BGWOTV1 0.006
BGWOTV2 0.444
BPSO2 0.002
BPSO 0.002
BPSOTV1 0.006
BPSOTV2 0.004
BHHOTV4 0.006
BHHOTV1 0.009
BHHOTV2 0.126
BWOA 0.002
BWOA-TV2 0.002
BWOATV1 0.004
BWOATV2 0.286
MRFOv3 0.002
BMRFO 0.002
BMRFOTV2 0.386

N. Mohd Yusof et al. Chemometrics and Intelligent Laboratory Systems 226 (2022) 104574
significant difference between BPSO2 and BPSO, while BPSOTV1 shows a
significant difference between BPSO2 only with p-values less than 0.05.
Conversely, there is no significant difference between BPSOTV1 and
BPSOTV1 with a p-value equal to 0.05. Similar results are displayed in
8
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Table 11–14 which indicate there are significant differences in the
average accuracies between proposed binary algorithms with existing
binary algorithms. Table 15 outlines the p-values between the best
performer algorithm, BMRFO TV1 with the other seventeen comparative
algorithms in this paper. The results denote that there are significant
differences and improvements between BMRFO TV1 and twelve algo-
rithms except for bGWO2, BGWOTV2, BHHOTV2, BWOATV2, BMRFOTV2.

5. Conclusions and future work

In this paper, the time-varying modified Sigmoid transfer function
with two time-varying update strategies are introduced as binarization
methods for PSO, GWO, WOA, HHO, and MRFO algorithms. These pro-
posed binary SI algorithms are used in the descriptors selection problem
to improve ATS drug classification accuracy. Among all the best proposed
binary algorithms, BMRFOTV1 was seen to be superior and significant in
selecting relevant and discriminative descriptors and obtained high
classification accuracy. This study opens research opportunities for other
researchers to employ the transfer functions in other existing or new
metaheuristic algorithms to solve various binary optimization problems.
Extensive performance validation can be conducted on the proposed
binary SI algorithms by testing themwith benchmarked datasets from the
UCI machine learning repository. Some of the improvement that can be
considered in the proposed binary algorithms is to employ stronger
classifiers as feature evaluator and to hybrid with chaos theory to
enhance the ATS drug classification performance.
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