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A B S T R A C T   

A new chaotic time-varying binary whale optimization algorithm (CBWOATV) is introduced in this paper to 
optimize the feature selection process in Amphetamine-type Stimulants (ATS) and non-ATS drugs classification. 
Two enhancement methods were introduced in this study to provide a fit balance between exploration and 
exploitation in standard WOA. Firstly, a non-linear time-varying modified Sigmoid transfer function is used as 
the binarization method. Second, a hybrid Logistic-Tent chaotic map is employed to substitute the pseudorandom 
numbers of the probability operator in standard WOA. Specific high-dimensional molecular descriptors of ATS 
and non-ATS drugs were employed to evaluate the efficiency of the proposed algorithm. Experimental results and 
statistical analysis indicate that the proposed CBWOATV algorithm can prevent the problem of stagnation and 
entrapment in local minima in WOA. As a result, optimal descriptors were selected contributing to enhanced 
classification performance.   

1. Introduction 

Descriptors selection has been popular research in cheminformatics 
since it is an essential pre-processing step in the computational chem-
istry model. The process is important due to the presence of new mo-
lecular descriptors that produce a large number of descriptors for each 
chemical compound. It may cause performance degradation in compu-
tation models, especially those that employed machine learning algo-
rithms [1]. Descriptor selection is a well-known non-polynomial (NP) 
hard combinatorial optimization problem, especially when dealing with 
high-dimensional data [2–4]. This issue could well be addressed most 
effectively and efficiently through the development of computational 
intelligence technologies such as the swarm intelligence (SI) algorithm 
[5]. SI algorithms have been a popular choice recently in the chem-
informatic domain for descriptors selection and some of the works are 
listed in Table 1. 

In 2016, Mirjalili and Lewis presented the Whale Optimization Al-
gorithm (WOA) algorithm in the SI domain. This algorithm is designed 
based on the hunting behavior of humpback whales which is known as 

bubble-net foraging [14]. The initial WOA algorithm is developed in a 
continuous version. The binary version of WOA is required to solve bi-
nary optimization problems [15–17]. 

The performance of swarm-based algorithms is highly dependent on 
the balance between exploitation and exploration. Premature conver-
gence is caused by excessive exploitation and less exploration, while 
greater exploration and less exploitation may provoke difficulties to 
reach the optimal solution [18,19]. In the feature selection domain, the 
stagnation and premature convergence in WOA can lead to an inade-
quate selection of significant features and poor classification perfor-
mance [20]. Various methods applied by researchers to improve the 
WOA convergence problem. The two methods that will be discussed and 
implemented in this study are the transfer function and chaos theory. 

A transfer function is one of the binarization methods popularly used 
in the SI domain [21]. This method is straightforward and does not 
enhance the complexity of the SI algorithm. Besides that, the transfer 
function can improve the exploration and exploitation of the SI algo-
rithm therefore the selection of an appropriate transfer function is 
important. Various transfer functions have been utilized and examined 

* Corresponding author. 
E-mail address: azah@utem.edu.my (A.K. Muda).  

Contents lists available at ScienceDirect 

Chemometrics and Intelligent Laboratory Systems 

journal homepage: www.elsevier.com/locate/chemometrics 

https://doi.org/10.1016/j.chemolab.2022.104635 
Received 2 July 2022; Received in revised form 27 July 2022; Accepted 27 July 2022   

mailto:azah@utem.edu.my
www.sciencedirect.com/science/journal/01697439
https://www.elsevier.com/locate/chemometrics
https://doi.org/10.1016/j.chemolab.2022.104635
https://doi.org/10.1016/j.chemolab.2022.104635
https://doi.org/10.1016/j.chemolab.2022.104635
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2022.104635&domain=pdf


Chemometrics and Intelligent Laboratory Systems 229 (2022) 104635

2

by several researchers in BWOA for feature selection problems in su-
pervised data classification [22–27]. 

Another improvement method in the SI domain is the application of 
chaos theory. Chaos is a non-linear system with deterministic dynamic 
behavior [28–30]. Chaos has the property of randomness, ergodicity, 
and non-repetition, and is highly sensitive to its initial conditions and 
parameters [29]. These chaotic system characteristics can enrich the 
searchability of the SI algorithm. Each chaotic map has its unique 
formulation. Implementation of different chaotic maps within the SI 
algorithm will yield different results. Table 2 listed some of the works 
that hybrid chaotic maps with SI algorithms to solve various problems. 

WOA algorithm has operators to balance between exploration and 
exploitation, unlike other SI algorithms such as particle swarm optimi-
zation (PSO) that apply one equation to update the agent’s position, 
which can increase the chance trapping in local optima. Several opera-
tors in WOA are assigned with pseudorandom numbers, for example, the 
operator p where it is the probability to choose either the shrinking 
encircling or the spiral model mechanism during the optimization pro-
cess. Therefore, Kaur and Arora developed a Chaotic WOA (CWOA) for 
global optimization in 2018 which adopted chaos theory to substitute 
the operator p with a set of chaotic numbers [34]. In the work, ten 
chaotic maps listed in Table 2 were adopted with the same initial value. 
Superior efficiency was displayed by CWOA with Tent chaotic map. 
CWOA was also implemented in the feature selection domain by Sayed 
et al. [35]. The authors employed chaos set for each 
pseudorandom-based operator in standard WOA. Like in former 
research, ten chaotic maps were examined within several CWOA vari-
ations using ten benchmark datasets from the University of California 
Irvine (UCI) Machine Learning repository. The chosen datasets contain a 
feature size between 10 and 82. Experimental results disclose the Tent 
map with modifications of exploration operators in CWOA-PI 

outperforms with the highest performance. Moreover, CWOA was cus-
tomed to resolve engineering problems [39,40]. Table 3 lists several 
chaos implementation techniques in WOA from the works of literature. 

Our study made the following contributions: (i) CBWOATV algorithm 
is an improved version of WOA with the integration of time-varying 
modified Sigmoid transfer function and Logistic-Tent chaotic map is 
proposed. (ii) CBWOATV algorithm is incorporated with wrapper feature 
selection algorithm to optimize wrapper feature selection technique. 
(iii) we show that implementation of the CBWOATV algorithm advan-
tages from a fast convergence speed and a robust search capability. (iv) 
we demonstrate the importance of descriptors selection by the 
CBWOATV algorithm in providing better drug classification performance 
in terms of accuracy and speed. (v) we show the proposed CBWOATV 
algorithm leads to quality solutions and can outperform the existing 
BWOA and CWOA-PI algorithms, as well as other state-of-the-art SI 
algorithms. 

Our study is limited to several mechanisms that are: (i) CBWOATV 
wrapper feature selection algorithm is developed to solve the descriptors 
selection problem in the drug analysis domain. (ii) A high-dimensional 
chemical dataset is used for algorithms evaluation. (iii) This study 
does not apply any data preprocessing to the chemical dataset. 

The remainder of this paper is structured as follows. Section 2 and 
Section 3 briefly describe the whale optimization algorithm (WOA) and 
chaotic maps. The detailed description of the proposed CBWOA algo-
rithm is explained in Section 4. Section 5 describes the experimental 
setting. Section 6 reports and discusses the experimental results. Finally, 
Section 7 concludes the paper and suggests possible future works. 

2. Whale optimization algorithm (WOA) 

In the initial stage, the WOA algorithm will assume the target prey as 
the best search agent that is near to the optimum. Then, other whales 
(search agents) will update their positions based on the best search 
agent. WOA swarming behavior is simulated in mathematical formula-
tions below: 

D= |C ⋅ Whale*(t) − Whale(t)| (1)  

Whale(t + 1)= Whale*(t) − A⋅D (2)  

where t is the iteration number. Whale(t) denotes the candidate search 
agent at iteration number t and Whale*(t) indicate as the best search 
agent (prey) so far. A and C are coefficient numbers mathematically 
formulated by Equations (3) and (4) below. D indicates the distance 
vector between the whale (search agent) and the prey (best search 
agent). In each iteration Whale*(t) is updated when there is a better 
solution. 

A = 2⋅a⋅r1 + a (3)  

C= 2⋅r2 (4)  

where r1 and r2 represent random vectors in [0, 1]. 

Table 1 
Some of the works of SI-based descriptors selection in the cheminformatics 
domain.  

Ref Application Algorithm 

[6] Drug classification Binary particle swarm optimization algorithm 
(BPSO), BWOA, and binary manta-ray 
optimization (BMRFO) 

[7] Drug classification Chaotic dragonfly algorithm (CDA) 
[8] QSAR modeling Hybrid Harris hawks optimization with cuckoo 

search and chaotic map (CHHO–CS) 
[9] QSAR modeling Harris hawks optimization (HHO) algorithm 
[10] QSAR modeling Salps algorithm 
[11] QSAR modeling Seagull optimization algorithm (SOA) 
[12] QSAR modeling Binary grasshopper optimization algorithm 

(BGOA) 
[13] QSAR/QSPR 

classification modeling 
Binary pigeon optimization algorithm (BPO)  

Table 2 
Previous works of the chaotic-based SI algorithms in various applications.  

Ref. Algorithms Application Initial 
point 

Chaotic 
map 

[7] Chaotic dragonfly Feature selection 0.7 Gauss 
[31] Chaotic crow search Feature selection 0.7 Sine 
[32] Chaotic salps swarm Feature selection 0.7 Tent 
[33] Chaotic binary particle 

swarm optimization 
Feature selection 0.48 Tent 

[34] Chaotic whale Global optimization 0.7 Tent 
[35] Chaotic whale Feature selection 0.7 Tent 
[29] Chaotic salp swarm Feature selection, 

Global optimization 
0.7 Logistic 

[36] Chaotic grasshopper Global optimization Not 
stated 

Circle 

[37] Chaotic antlion Parameter 
optimization 

Random Logistic 

[38] Chaotic bat Global optimization Random Sinusoidal  

Table 3 
Different techniques of chaotic map implementation in WOA for various appli-
cations in the literature.  

Description Application 

Population initialization Global optimization [41] 
Shrinking circle 

mechanism 
Feature selection [35,42], engineering [39,40,43,44] 

Spiral shaped mechanism Feature selection [35], engineering [44] 
Probability parameter, p Global optimization [34], feature selection [35,42], 

engineering [44,45] 
Choosing a random search 

agent 
Feature selection [35] 

Convergence factor, a Engineering [44]  
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a= 2 − t
2

maxIter
(5)  

a is a convergence factor that gradually decreases from 2 to 0 over it-
erations. t indicates the iteration number and maxIter is the maximum 
number of iterations. 

The humpback whale’s bubble-net behavior is designed based on two 
mechanisms:  

(1) Shrinking encircling of prey: The humpback move in a shrinking 
encircling along a spiral-shaped path towards the prey by 
decreasing the value a in Equation (3) and Equation (5). The 
fluctuation range of A also decreases as a decreases. A is a random 
value in the interval ( − a,a)

(2) Spiral updating position: A logarithmic spiral function is used to 
imitate the helix-shaped movement of the humpback whales be-
tween the candidate whale (search agent) Whale(t), and the prey 
(best search agent), Whale∗(t) so far. This procedure is mathe-
matically expressed in Equation (6) and Equation (7). 

D* = |Whale*(t) − Whale(t)|, (6)  

Whale(t + 1)=D* ⋅ ebl ⋅ cos(2πl) + Whale*(t), (7)  

where b is a constant defining the logarithmic spiral shape and l is a 
random number in [-1, 1]. 

The humpback whale swims around its prey in a narrow circle, while 
swimming along a spiral path. To simulate this simultaneous behavior, 
an assumption of 50% probability is used to choose between these two 
mechanisms to update the whales’ position. The mathematical formu-
lation to model this behavior is established as follows: 

Whale(t + 1)=
{

Whale*(t) − A⋅D, if p < 0.5,
D*⋅ebl⋅cos(2πl) + Whale*(t), if p ≥ 0.5,

(8)  

where p is a random number in. [0, 1].
Contradicting the exploitation phase, in the exploration phase a 

search agent position is updated following a randomly chosen search 
agent instead of the best search agent found so far. A, in Equation (3) 
with the random values greater than 1 or less than − 1. will urge the 
search agent to move far away from the reference whale. With this 
mechanism and |A| > 1, it emphasizes exploration and allows WOA to 
perform a global search to overcome the problem of the local optima. 
Equation (9) and Equation (10) describe the mathematical formulation: 

D= |C ⋅ Whalerand − Whale| (9)  

Whale(t + 1)=Whalerand − A⋅ D (10)  

where Whalerand indicates a whale that is randomly chosen from the 
current population. 

3. Chaos theory 

Many SI algorithms contain randomness parameters. The random-
ness is drawn randomly from a uniform or Gaussian distribution. From 
the optimization perspective, a chaotic map can help escape from the 
local optimum and enhance the convergence rate to attain the global 
optimal solution. A chaotic map is regularly used to define optimization 
parameters as well as to generate the initial population. The initial value 
of the chaotic index is usually determined randomly or by a fixed 
number between 0 and 1. However, it is important to note that the initial 
value may have a significant effect on the fluctuation pattern of the 
chaotic mapping [20]. Table 4 listed the commonly used chaotic maps in 
the literature specifically in the metaheuristic algorithms [46–48]. 

4. Proposed method 

The framework of the proposed technique is depicted in Fig. 1. The 
process begins by inputting the original Three Dimensional Exact Leg-
endre Moment Invariants (3D ELMI) molecular descriptors [49] into the 
CBWOATV algorithm. CBWOATV algorithm is responsible for searching 
and selecting the relevant descriptors. Since it employed the wrapper 
method, the k-Nearest Neighbor (k-NN) classifier with the Euclidean 
distance metric and k is set to 5 as in Refs. [22,50–53] is employed to 
evaluate the selected descriptors by CBWOATV. K-NN generates the 
classification error rate and passes it back to the CBWOATV to calculate 
the fitness of the selected descriptors using the fitness function in 
Equation (14). The smaller fitness rate indicates the relevant descriptors 
have been selected. The process of finding relevant descriptors is 
repeated until the specified maximum iteration is reached. This pro-
posed method is expected to accelerate and ease the learning process of 
the classifier after the elimination of irrelevant descriptors from original 
molecular descriptors. Finally, the optimal selected descriptors subset is 
validated using the same classifier to generate the final classification 
results for the assessment process. 

4.1. The binary whale optimization algorithm (BWOA) 

The binary version of the WOA is mandatory to generate binary so-
lutions {0, 1} for the feature selection problem [54]. Similar to WOA, in 
BWOA the search agents (solutions) update their positions continuously 
to any point in the search space based on the best search agent discov-
ered so far. Then the real position of whales is converted to binary values 
using a transfer function. This technique forces whales to move in a 
binary space by probability definition which updates each element 
(feature) in the solution (features subset) to 0 (not selected feature) or 1 
(selected feature) [55]. 

4.1.1. Non-linear time-varying Sigmoid transfer function 
In this work, we adopted a recently proposed transfer function in 

Ref. [56] as the binarization method. The transfer function in Equation 
(11) is applied to convert the continuous value of WOA’s position to a 

Table 4 
The chaotic maps and their definition.  

No. Name of 
map 

Equation Range 

1 Chebyshev pq+1 = cos(q cos− 1(pq)) ( − 1,
1)

2 Circle pq+1 = mod
(

pq + r −
( 1
2π
)
sin(2πpq), 1

)
, l =

0.5 and r = 0.2 

(0, 1)

3 Gauss/ 
mouse pq+1 =

⎧
⎪⎪⎨

⎪⎪⎩

1, pq = 0

1
mod(pq, 1)

, otherwise 

(0, 1)

4 Iterative pq+1 = sin
( lπ
pq

)
, l = 0.7 ( − 1,

1)
5 Logistic pq+1 = lpq(1 − pq), l = 4 (0, 1)
6 Piecewise 

pq+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pq

l
, 0 ≤ pq < l

pq − l
0.5 − l

, l ≤ pq < 0.5

1 − pq

l
, 1 − l ≤ pq < 1 

(0, 1)

7 Sine pq+1 =
l
4

sin (πpq), l = 4 (0, 1)

8 Singer pq+1 = μ(7.86pq − 23.31p2
q + 28.75p3

q −

13.302875p4
q), μ = 1.07 

(0, 1)

9 Sinusoidal pq+1 = lp2
q sin (πpq), l = 2.3 (0, 1)

10 Tent 

pq+1 =

⎧
⎪⎨

⎪⎩

pq

0.7
, pq < 0.7

10
3

(1 − pq), pq ≥ 0.7 

(0, 1)
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probability value: 

Sigmoid
(

Whale
̅̅̅ →

(t + 1)
)
=

1

1 + e− 10(Whale̅̅→
(t+1)/Tv− 0.5)

(11)  

where Tv is a time-varying control parameter that decreases over iter-
ations. 

The time-varying (Tv) is updated using a non-linear scheme as pre-
sented in Equation (12): 

Tv(t)= Tvmax + (Tvmin − Tvmax)

(
Itrt+1

Itrmax

)α

(12)  

where Tvmin, Tvmax denote the minimum and maximum values of the 
control parameter, Itrt+1 is the current iteration while Itrmax signifies the 
maximum number of iterations. In this study, Tvmax, Tvmin and α is set to 
4, 0.1, and 0.5 same as [56]. 

Lastly, the probability value in each element in the whale’s position 
vector is converted to a binary value using Equation (13). This formu-
lation was proposed by Kennedy and Eberhart in Ref. [42]: 

Whale
̅̅̅ →

(t+ 1)=
{

1, if rand < Sigmoid
(

Whale
̅̅̅ →

(t + 1)
)

0, otherwise
(13)  

4.1.2. Fitness function 
The success of the feature selection algorithm is measured based on 

two objectives: increase classification accuracy and reduce features 
[57]. The fitness function used in the feature selection technique is 
designed to have a balance between these objectives. In a wrapper 
feature selection method, a classification algorithm is involved to 

evaluate the selected features. The classification error rate produced 
from the evaluation process is then used in the fitness function formu-
lation in Equation (14). The fitness function is utilized by the optimi-
zation algorithm to evaluate the recommended feature subset. The best 
feature subset is the one with a small classification error rate and a less 
number of selected features. The small fitness value means the relevant 
feature subset has been selected. 

↓ Fitness= α × CE + β ×
|Fselect|

|Factual|
(14)  

where CE represents the classification error rate calculated by the 
classifier. |Fselect | is the number of selected features, and |Factual| is the 
original feature size, α, and β are the two parameters corresponding to 
the importance of classification quality and subset length. α ∈ [1, 0]
and β = (1 − α) are adopted from Refs. [58,59]. For this work, the clas-
sification performance is considered to be the most important metric, 
thus α is seted to 0.99, thus β is 0.01 [58,60]. 

4.2. The chaotic time-varying binary whale optimization algorithm 
(CBWOATV) 

In the original WOA, the pseudorandom numbers are assigned to 
parameter p = rand() to help in controlling the exploration and 
exploitation. However, in this work, the operator p is taken from the 
sequence of Logistic-Tent chaotic vector, cp. As far as we know, no 
previous study has employed the Logistic-Tent in WOA [34]. The 
mathematical formulation of the Logistic-Tent map is presented in 
Equation (14).  

Fig. 1. Framework of the proposed CBWOATV wrapper feature selection technique.  
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Fig. 2. Pseudo-code of the CBWOATV algorithm.  

pq+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mod
(

rpq
(
1 − pq

)
+
(4 − r)pq

2
, 1
)

, if pq < 0.5

mod

(

rpq
(
1 − pq

)
+
(4 − r)

(
1 − pq

)

2
, 1

)

, if pq ≥ 0.5
, r ∈ [1, 4] (14)   
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In the equation, p represents the initial point, and q denotes the index 
of the chaotic sequence. In this study, we draw the initial value p0 as in 
Refs. [20,34,35], which is 0.7. The pseudo-code of the CBWOATV algo-
rithm is presented in Fig. 2. 

5. Experimental setting 

5.1. Dataset 

The 3D ELMI molecular descriptors dataset contains an equal sample 
size of 3595 ATS drug compounds and 3595 non-ATS drug compounds. 
Each drug is described by 1186 descriptors including molecule id and 
the class label (0 - non-ATS and 1 - ATS). However, the molecule id is 
excluded during experimentation. 

In the experiments, the hold-out validation strategy with stratified 
data partitioning of 80% train set and 20% test set is applied to evaluate 
the proposed algorithm and comparative algorithms [51,57]. Stratified 
data partitioning is utilized to ensure the train set and test set are 
composed of a balanced number of ATS and non-ATS drugs sample. All 
algorithms are repeated ten times with different random seeds. Different 
random seeds are used to provide different data partitions in each 
different run. This is one way to inspect the robustness of the proposed 
algorithm. The experimental results are presented as the average metrics 
achieved from ten independent runs to obtain statistically valid results. 
All algorithms are developed using Matlab R2021a that runs on a PC 
with an Intel Core i7-6700 machine, 3.40 GHz CPU with Windows 10 
operating system, and 16 GB of RAM. The parameter settings used in the 
experiments are shown in Table 5. 

5.2. Performance measurement 

Several performance metrics are used to validate the performance of 
the proposed CBWOATV algorithm and its comparative algorithms 
which include the maximum fitness, minimum fitness, average fitness 
and its corresponding standard deviation, average size of selected de-
scriptors, and average computational time (CT) in seconds. Then, the 
final classification performance is measured by the following metrics: 

Accuracy =
TP + TN

TP + TN + FP + FN  

Sensitivity =
TP

TP + FN  

Specificity=
TN

TN + FP  

G − mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity*Specificity

√

AUC =
Sensitivity + Specificity

2 

The reliability of the proposed CBWOATV algorithm is statistically 
analyzed by the non-parametric Wilcoxon signed-rank sum test [49]. A 
qualitative assessment is performed based on convergence curves 
depicted in Fig. 3. 

6. Experimental results and discussion 

Two different evaluations were reported in this section. The first 
evaluation aims to compare the CBWOATV algorithm with other 
comparative SI algorithms which include BWOA [6,22], CWOA-PI [35], 
BWOA-TV2 [26], TVT-BPSO [62], BHHOTV4 [63], MRFOv3 [61]. The 
second evaluation is to compare the classification performance using the 
selected descriptors by the CBWOATV algorithm with the classification 
performance of three different classifiers k-NN, support vector machine 
(SVM) with radial basis function (RBF) kernel, and random forest (RF) 
classifiers using the original descriptors. 

6.1. Evaluation of CBWOATV and other SI algorithms 

Initially, we have executed 11 variants of CBWOATV implementing 
chaotic maps in Table 4 including the Logistic-Tent map. In this paper, 
only the best variant of CBWOATV is reported and used for comparative 
analysis. From our experiments, CBWOATV with a Logistic-Tent map is 
found to be superior to others. 

Table 5 
Parameter settings.  

Algorithm Parameter Value 

All Search agent (whale) 
size, N 

15 

Iteration length, tMax 300 
No. of runs, R 10 
Problem dimension 1185 
Search domain [0,1] 
α in the fitness function 0.99 
β in the fitness function 0.01 

BWOA [6,22], BWOA-TV2 [26], CWOA-PI 
[35], CBWOATV 

a→ 2 to 0 

MRFOv3 [61] Somersault factor, S 2 

BWOA-TV2 [26], CBWOATV Tvmax 4 
Tvmin 0.1 

TVT-BPSO [62] Tvmax 5 
Tvmin 1 

BHHOTV4 [63] Tvmax 4 
Tvmin 0.01  Fig. 3. Convergence curves of proposed CBWOATV and other comparative 

SI algorithms. 

Table 6 
Comparison results based on fitness performance and average computational 
time (CT) in seconds.  

Algorithm Max Min Mean Std Avg. CT 

BWOA 0.18182 0.16479 0.17422 0.00561 2278.5 
CWOA-PI 0.22065 0.18954 0.20819 0.00981 3078.41 
BWOA-TV2 0.21195 0.18715 0.20369 0.00706 11726.90 
MRFOv3 0.19854 0.17982 0.18631 0.00505 677.6 
TVT-BPSO 0.21167 0.19210 0.20227 0.00557 7166.2 
BHHOTV4 0.21573 0.18333 0.19901 0.00930 226.8 
CBWOATV 0.17436 0.15141 0.16006 0.00702 685.7  
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The performance results in Table 6, Table 7, and the Wilcoxon 
signed-rank test statistical analysis in Table 8 show the superiority of the 
proposed CBWOATV in convergence, robustness, stability, and obtaining 
relevant descriptors after attaining the lowest maximum, minimum, and 
mean fitness rate. All algorithms are seen to have a low standard devi-
ation, but the MRFOv3 provides the lowest. BHHOTV4 has the fastest 
convergence speed but failed to obtain the global optimal solution. In 
terms of the average size of selected descriptors, MRFOv3 exhibits the 
fewest descriptors but might neglect the significant one after obtaining 
the low average accuracy, G-mean, and AUC. CWOA-PI is the worst 
performer among all with a long computational time. It exhibits CWOA- 
PI not able to perform well with large feature dimensions. 

Fig. 3 indicates that BWOA, CWOA-PI, BWOA-TV2, MRFOv3, TVT- 
BPSO, and BHHOTV4 were inferior to CBWOATV. CBWOATV is seen to 
converge faster and deeper than other algorithms to find the optimal 
solution. This confirmed the two applied improvement methods influ-
enced a satisfactory performance in the CBWOATV algorithm. 

Furthermore, Wilcoxon signed-rank tests based on the mean fitness, 
accuracy, G-mean, and AUC were carried out. The statistical analysis is 

to validate whether there are significant differences between CBWOATV 
and comparative algorithms with a 0.05 significance level. The null 
hypothesis states that no significant difference between the two algo-
rithms is accepted when the p-value is greater or equal to 0.05. Other-
wise, the null hypothesis is rejected when the p-value is lower than 0.05. 
As seen in Table 8, all the comparative algorithms attained p-values less 
than 0.05 in all metrics when compared with CBWOATV, which estab-
lished there are significant differences. 

6.2. Evaluation of CBWOATV and other supervised classification 
algorithms 

This section presents the efficacy of CBWOATV in reducing the number 
of descriptors and increasing the classification performance. The original 
dataset is fed to three different classifiers, k-NN, SVM (RBF), and RF. The 
classification performances of these three classifiers are compared with our 
proposed technique. Referring to the bar graph in Fig. 4, our proposed 
technique obtained the best scores for average accuracy, average G-mean, 
and average AUC. As displayed in Table 9, only 8% of the descriptor in the 
original dataset is found significant by CBWOATV. Fewer number de-
scriptors reduced the time required for all classifiers to learn and make a 
prediction. The p-value of Wilcoxon signed-rank tests in Table 10 denote 
there are significant differences in classification performance after 
employment of CBWOATV as a descriptors selector. 

Table 7 
Comparison results based on the average number of selected descriptors, 
average accuracy, average G-mean, and average AUC.  

Algorithm Avg. Nd Avg. accuracy Avg. G-mean Avg. AUC 

BWOA 184 82.6 82.8 82.8 
CWOA-PI 204.10 79.14 79.40 79.46 
BWOA-TV2 805 80.1 80.4 80.5 
MRFOv3 34 81.2 81.3 81.4 
TVT-BPSO 588 80.1 80.4 80.5 
BHHOTV4 38 79.9 80.1 80.1 
CBWOATV 98 83.9 84.1 84.2  

Table 8 
P-values of Wilcoxon signed-rank test based on mean fitness, average accuracy, 
average G-mean, and average AUC between CBWOATV with other SI algorithms.  

Algorithm Mean fitness Avg. accuracy Avg. G-mean Avg. AUC 

BWOA 0.002 0.002 0.002 0.002 
CWOA-PI 0.002 0.006 0.002 0.002 
BWOA-TV2 0.002 0.002 0.002 0.002 
MRFOv3 0.002 0.006 0.002 0.002 
TVT-BPSO 0.002 0.006 0.002 0.002 
BHHOTV4 0.002 0.002 0.002 0.002  

Fig. 4. Comparison of classification performance of our proposed technique and three classifiers.  

Table 9 
Comparison results based on descriptors’ length and average classification speed 
of the proposed technique with k-NN, SVM, and RF.  

Algorithm CBWOATV Original - k- 
NN 

Original - 
SVM 

Original - 
RF 

No. of 
descriptors 

98 1185 1185 1185 

Average CT (s) 0.5 3.2 21.6 111.6  

Table 10 
P-values of Wilcoxon signed-rank between the proposed technique with k-NN, 
SVM, and RF.  

Algorithm Original - k-NN Original - SVM Original - RF 

Avg. accuracy 0.002 0.006 0.041 
Avg. G-mean 0.002 0.002 0.037 
Avg. AUC 0.002 0.002 0.037  
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7. Conclusions and future work 

This work presents the CBWOATV wrapper feature selection algo-
rithm in finding relevant descriptors for the k-NN classifier to achieve 
better learning and obtain good prediction ability in classifying between 
ATS and non-ATS drugs. The implementation of a time-varying modified 
Sigmoid transfer function and Logistic-Tent map provide a fit balance 
between the exploration and exploitation stages of the WOA algorithm. 
The comparative analysis shows CBWOATV outperforms BWOA, TVT- 
BPSO, BHHOTV4, and MRFOv3 algorithms. The comparison results of 
CBWOATV with k-NN, SVM(RBF), and RF classifiers have demonstrated 
the importance of descriptors reduction in improving the classification 
accuracy and accelerating the classification time. The application of 
different implementation strategies of the Logistic-Tent chaotic map is 
interesting to explore. Furthermore, the employment of the proposed 
CBWOATV algorithm to other real-world problems [64,65] can be 
investigated and applied. For future improvement, we want to apply the 
3D ELMI molecular descriptors to the recent metaheuristic algorithms 
such as Farmland Fertility [66], Artificial gorilla troops optimizer [67], 
and African vultures optimization algorithm [68]. 
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