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Abstract
Recently, many researchers have paid attention to wireless sensor networks (WSNs) due to their ability to encourage the 
innovation of the IT industry. Although WSN provides dynamically scalable solutions with various smart applications, the 
growing need to maximize the area coverage with decreasing the percentage of deployed sensor nodes is still required. Ran-
dom deployment is preferable for large areas that require a maximal number of nodes but result in coverage holes. As a result, 
mobile nodes are used to reduce coverage holes and maximize area coverage. The main objective of this study is to present 
an Improved Dynamic Deployment Technique based-on Genetic Algorithm (IDDT-GA) to maximize the area coverage with 
the lowest number of nodes as well as minimizing overlapping area between neighboring nodes. A two-point crossover novel 
is introduced to demonstrate the notation of variable-length encoding. Simulation results reveal that the superiority of the 
proposed IDDT-GA compared with other state-of-the-art techniques. IDDT-GA has better coverage rates with 9.69% and 
a minimum overlapping ratio with 35.43% compared to deployment based on Harmony Search (HS). Also, IDDT-GA has 
minimized the network cost by 13% and 7.44% than Immune Algorithm (IA) and Whale Optimization Algorithm (WOA) 
respectively. Besides, it confirms its stability with 83.04% compared to maximizing coverage with WOA.

Keywords Coverage · Deployment techniques · Genetic algorithm (GA) · Whale optimization algorithm (WOA) · Wireless 
sensor network (WSN) · Quality of service (QoS)

1 Introduction

Wireless sensor networks (WSNs) (Ezhilarasi and Krish-
naveni 2018) are a group of sensor nodes with limited pro-
cessing and low power capacity (Su and Zhao 2017). These 
nodes are spatially scattered in an ad-hoc manner for collect-
ing physical information from the surrounding  environment 
and relaying collected data to the sink node as well. Different 
environmental conditions can be recorded by WSNs such 
as sound, wind, pressure, room temperature, humidity, and 
pollution level. On other hands, WSNs heavily affect real-
time applications (Sengupta et al. 2013), which comprises 
intelligent transportation systems (ITS), security monitor-
ing, military surveillance, battlefields , health care, trans-
portation, environmental monitoring, industrial monitoring 
(Aponte-Luis et al. 2018), and agriculture.

As a part of the WSNs scenario, the environmental appli-
cations which aim to track and record the environmental 
changes, whether indoor or outdoor. The indoor applications 
may fall into the category of urban applications (including 
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pollution, healthcare, and lighting tracking). By contrast, 
outdoor applications involve open nature surveillance [(e.g. 
chemical and biological risks, volcanos, earthquake, and 
flood detection, and weather forecasting, habitat track-
ing, transportation, agriculture monitoring, and underwa-
ter exploration applications (Priyadarshini and Sivakumar 
2019)] (Ali et al. 2017). Besides, WSNs play an efficient role 
in remote and catastrophe monitoring such as military appli-
cations (Mahamuni 2016). Sensor nodes in military applica-
tions are randomly deployed (Tian 2019) in the target field 
which results in areas of varying density. Therefore, maxi-
mizing sensing area coverage is an essential requirement.

Many challenges and issues are facing WSNs such as 
the limitation of equipped battery power, memory, process-
ing and communication cost. Moreover, sensor nodes are 
subject to failure due to a lack of manufacturing, environ-
mental, weather conditions, and drain battery power (Bala 
et al. 2018). As a result, Deploying a sufficient number 
of sensor nodes to maximize area coverage is considered 
as a critical issue for implementing WSNs (Tripathi et al. 
2018). Currently, deployment techniques can be found in 
(Banoori et al. 2018; Boualem et al. 2018) which classi-
fied them into random deployment, deterministic and semi-
random deployment techniques. In the case of sensor nodes 
are drawn randomly from aircraft in large open and hostile 
environments such as earthquakes, oceans, and volcanoes, 
random deployment techniques are usually used. However, 
it may result in areas with different densities and coverage 
holes. Therefore, random deployment is not guaranteed for 
achieving maximum coverage. In deterministic deployment 
sensor nodes positions are fixed, and it is used in small areas 
(indoor) environments. It minimizes network cost, network 
lifetime and guarantees maximum area coverage. Semi-
random deployment is a hybrid deployment that gathers the 
advantages and minimizes the drawbacks of random deploy-
ment and deterministic deployment.

Every sensor node has a sensing range ( rs ) which influ-
ences area coverage and communication range ( Rc ) that 
indicates communication between nodes. The area is fully 
covered (More and Raisinghani 2017) if and only if every 
target point in the monitoring area is covered by at least one 
sensor (within rs ). Besides, sensor nodes are connected and 
sharing data with their neighbors which are located within 
their communication range to ensure connectivity. Coverage 
and connectivity are considered measures of WSN’s quality 
of service (QoS). In most cases, to achieve maximum cover-
age, a massive number of sensor nodes are required. Based 
on the nature of the application, coverage has many types 
(Nehra et al. 2019) including area coverage, point of interest 
coverage and barrier coverage (Khoufi et al. 2016). The area 
coverage has two types, full area coverage and partial area 
coverage (Hanh et al. 2019). The main coverage challenge 
as to how to deploy the minimum number of sensor nodes 

that achieve maximum area coverage (Jha and Eyong 2018). 
Maximizing coverage is considered as Non-deterministic 
Polynomial-time hard (NP-hard) problem (Gupta et al. 2016).

Depending on the nature of the application, nodes can 
be mobile, static, heterogeneous (Mostafaei and Obaidat 
2017) or homogeneous (Singh and Sharma 2014). In the 
case of deploying static nodes, their position is fixed and 
may be deployed randomly or deterministically according 
to the requirements of the application. Lack of mobility in 
static nodes takes advantage of saving cost and energy. How-
ever, during the operation of WSN, few sensor nodes expire 
because of energy depletion and the area coverage can be 
partially broken down. This is called a coverage hole, Fig. 1 
shows an example for the coverage hole. Therefore, mobile 
nodes are moved to fill up those holes. Mobile nodes are 
usually deployed randomly after the initial deployment of 
static nodes. But, the mobility feature consumes more bat-
tery power and increase implementation cost (Chien et al. 
2012). Regardless of sensor type, coverage and connectivity 
techniques can be classified into three main categories (Farsi 
et al. 2019): classical deployment strategies, meta-heuristic 
strategies, and self-scheduling strategies.

Determining the optimal sensor nodes locations within 
the area helps in achieving maximum coverage of the target 
area. Hence, coverage maximization is considered as an opti-
mization problem, which can be solved with soft computing 
tools. There are many researchers focused on meta-heuristic 
based techniques because they can achieve high stability and 
performance for WSNs. Besides, meta-heuristic techniques 
can optimize multi-objective functions like power consump-
tion, coverage, and connectivity. Therefore, the main contri-
bution of this paper is to investigate an Improved Dynamic 
Deployment Technique based on Genetic Algorithm (IDDT-
GA), which guarantees maximum coverage with a minimum 
number of nodes. Reducing the amount of deployed nodes 
directly impacts the reduction of network costs. Rather 
than using additional and redundant nodes that boost costs, 
IDDT-GA uses sufficient nodes to cover the entire region. 
Besides, an efficient derivation for an objective function is 
presented that ensures two main objectives. The first objec-
tive is maximizing area coverage. The second objective is 
minimizing the number of sensor nodes that contributes 
to minimizing the overlapping area between sensor nodes. 
Also, random deployment is considered for implementing 
the system. Random deployment produces regions of vari-
able intensity, high-density regions while others with lower 
intensity but rich in data that may be lost owing to lack of 
optimum coverage. Therefore, the mobility feature is used 
to eliminate coverage holes and increase area coverage. Fur-
thermore, connectivity between nodes is considered to guar-
antee 1-connectivity between sensor nodes. An implementa-
tion is performed based on GA with an improved two-point 
crossover for making the chromosome length adaptive and 
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allows the algorithm to search for the minimal number of 
sensor nodes that could be able to cover the area. The simu-
lation results prove the superiority of the proposed IDDT-
GA over the related state-of-the-art techniques.

The main contributions of this paper can be summarized 
as follows:

– Proposing a deployment technique based on the GA algo-
rithm that achieves maximum coverage with a minimum 
number of nodes.

– An improved two-point crossover is introduced to adapt 
the length of the chromosome and permit GA to search 
for the minimal number of sensor nodes that maximizes 
the area coverage.

– Ensuring 1- connectivity between sensor nodes.
– Deriving an efficient objective function with two main 

objectives, maximizing coverage and minimizing the 
number of sensor nodes.

This paper is organized as follows: Sect. 2 summarizes the 
related work. Section 3 presents the problem formulation. 
Section 4 illustrates the proposed IDDT-GA technique. Sec-
tion 5 provides the simulation results and comparisons. Sec-
tion 6 concludes the paper.

2  Literature review

Node deployment techniques are considered one of the most 
significant techniques to enhance WSN coverage. Even 
though there are many kinds of research conducted on the 

node deployment problem of WSN, efforts still needed so 
that a unique solution can be realized. Random deployment 
techniques can use hybrid nodes (static and mobile nodes) or 
use mobile nodes only (Sharma et al. 2016). In both cases, 
optimization techniques can be used to determine the best 
node locations that maximize area coverage and ensuring 
connectivity to the sink node. A considerable number of 
meta-heuristics are used to solve this problem with differ-
ent methods.

The dynamic deployment problem using mobile sensor 
nodes is employed with Artificial bee colony (ABC) algo-
rithm in (Öztürk et al. 2012). Their investigated algorithm 
has high performance in area coverage maximization. How-
ever, they do not give attention to nodes connectivity with 
the sink node or network cost. Abo-Zahhad et al. (2014) pro-
posed coverage maximization for WSNs using Immune node 
deployment algorithm (CM-IA). An objective function con-
sidering maximizing area coverage and minimizing energy 
consumption is derived. As node mobility consumes more 
power, this power is minimized through the reduction of root 
mean squared moved distances for all sensor nodes. Simula-
tion results showed that their algorithm outperforms other 
algorithms in terms of the coverage area and the redundant 
covered area. Besides, it minimizes the moving consumed 
energy per each node. However, it did not ensure network 
connectivity or achieving coverage with the minimum num-
ber of deployed nodes.

Ensuring k-coverage and m-connectivity between sen-
sor nodes using a genetic algorithm in target-based WSN 
introduced in (Gupta et al. 2016). Their proposed algorithm 
provided representation for each chromosome as 0 and 1 

Fig. 1  An example of coverage 
hole
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string with the same length of the number of potential posi-
tions. Besides, the derivation for an efficient fitness function 
is presented, which guarantees coverage and connectivity up 
to 3 and 2 for k and m respectively. Besides, their proposed 
algorithm is simulated with various WSNs scenarios with 
variation in the number of potential positions. The proposed 
algorithm proves its superiority with the minimum num-
ber of selected potential positions compared to a greedy 
approach (Rebai et al. 2015).

Moh’d Alia and Al-Ajouri (2017) proposed a Harmony 
Search (HS)-based deployment technique that maximizes 
coverage with minimum nodes deployed deterministically in 
the target area. For the representation of a variable number 
of nodes in each candidate solution, a variable-length encod-
ing is used. Besides, the coverage ratio, a distance between 
sensor nodes, and the number of deployed nodes were the 
main terms of the derived fitness function. The proposed 
technique proved its effectiveness, stability, and superiority 
in achieving full coverage with minimal cost compared to 
GA. However, connectivity and consumed power per node 
didn’t consider.

El Khamlichi et al. (2017) investigated a hybrid deploy-
ment technique for WSNs with a minimum number of nodes 
for both barrier and area coverage problems. It is a hybrid 
of simulated annealing (Du and Swamy 2016) and a gradi-
ent algorithm. This technique has achieved 1- coverage and 
1- connectivity for small and large maps, with size 100 × 
100 pixels and 500 × 500 pixels respectively. Also, it has 
the ability for optimizing nodes’ locations, nodes count, 
and guarantee the highest coverage to meet application 
requirements.

Mobile nodes with random deployment presented in 
ÖZDAĞ and CANAYAZ (2017). It proposed a dynamic 
deployment algorithm using a whale optimization algorithm 
for coverage ratio optimization (MADA-WOA). Besides, 
MADA-WOA achieves more optimal coverage rates with 
a minimum number of nodes compared to the maximum 
area detection algorithm based on electromagnetic (MADA-
EM). Moreover, it has fast convergence and high stability. 
Although, this algorithm did not draw attention to network 
connectivity.

Coverage maximization with a Firefly optimization algo-
rithm for mobile WSNs introduced in Tuba et al. (2017). 
The proposed algorithm contributed to minimizing nodes’ 
power consumption by reducing the root mean of the sum 
squared moved distances of all nodes as the same as Abo-
Zahhad et al. (2014). Furthermore, simulation and compari-
sons with other state-of-the-art techniques prove the supe-
riority of Firefly with maximum coverage and less power 
consumption.

Enhanced Cuckoo Search and Chaotic Flower Pollina-
tion are proposed in Binh et al. (2018) for maximizing area 
coverage with heterogeneous sensor nodes. The results of 

experiments demonstrated the strength of these two algo-
rithms in computational time, fast convergence and in the 
reliability of the solution compared to the state-of-the-art.

To minimize the number of deployed sensor nodes, some 
researches focused on area partial coverage instead of area 
full coverage. Area partial coverage addressed cases where 
a small area of interest is necessary to be constantly moni-
tored. An efficient Learning Automata-based algorithm 
(PCLA) (Mostafaei et al. 2016) is introduced to minimize 
the number of sensor nodes for covering a certain portion of 
the target area and maintaining sensor connectivity. Simu-
lation results proved that PCLA can effectively choose the 
minimum number of sensor nodes that meet constraints 
imposed. PCLA ensured a good performance in terms of 
both the ratio of active-nodes and lifetime of WSN over 
state-of-the-art partial coverage techniques.

Coverage Scheduling and Power-Aware Connectivity 
(CSPAC) is introduced in Elma and Meenakshi (2019). 
Based on heterogeneous WSN, a dynamic cluster structure 
technique is used for grouping the sensors into clusters. The 
Artificial Bee Colony (ABC) optimization algorithm is used 
to determine the minimum active set needed for achieving 
the Q-coverage and ensure network connectivity. Besides, 
power-aware scheduling and battery discharge quality are 
used for maximizing the network timespan. Simulation 
results prove the ability of CSPAC for improving the cover-
age and connectivity in heterogeneous WSN with a mini-
mum number of active nodes.

As sensor deployment has a direct impact on WSN per-
formance and routing reliability, a new technique to optimize 
the deployment of sensor nodes over an area is proposed 
in Musa et al. (2019). They optimized the network life-
time, ensure network connectivity, and provides solutions 
for short-term and long-term monitoring applications. The 
results indicate that the proposed technique outperforms the 
state-of-the-art in terms of optimal positioning sensors and 
energy consumption follows a uniform distribution over the 
network.

To minimize power consumption per sensor nodes dur-
ing data communication, an energy optimization in WSNs 
based on a genetic algorithm introduced in Jha and Eyong 
(2018). GA implemented on three different energy models 
for finding the optimal GA by selecting a proper combina-
tion of selection, crossover and mutation methods. Over 200 
iterations, stochastic uniform selection method, two-point 
crossover and uniform mutation method with mutation rate 
0.04, it achieves minimum energy consumption rates among 
other methods.

Briefly, state-of-the-art techniques contributions have 
limitations in the following points:

– Achieving maximum network coverage using different 
optimization techniques is considered by all of them 
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however, to the best known of the authors, only one work 
has considered network connectivity between nodes.

– Maximizing coverage with a minimum number of nodes 
is considered by little of them, although the number of 
nodes affects the network’s cost directly.

– Deploying sensor nodes deterministically is considered 
by many works, while little works interested in random 
deployment.

– Stability and reliability of the system were observed by a 
few of them, although it is an important factor in judging 
the performance of the system.

Table 1 provides a comparison among previous techniques, 
considering which of them touched the following issues: 
coverage, connectivity, minimizing the number of deployed 
nodes and power consumption per node. Besides, advantages 
and limitations were discussed.

Therefore, there is a crucial need for maximizing area 
coverage in WSNs using minimum cost besides, ensur-
ing network connectivity between them for the success of 
WSN’s operation.

3  Problem formulation

Maximizing network coverage in WSN is a critical issue for 
WSN’s performance metrics. Achieving maximum coverage 
with a minimum number of sensor nodes is the main target 
for this research. Hence, maximum coverage can be realized 
through the optimal deployment of sensor nodes in the target 
area. Accordingly, this paper proposed a deployment tech-
nique based on GA for maximizing coverage for randomly 
deployed nodes in the target area. Assume area A with size 
M × N grid points and a set of WSN sensor nodes S=s1,s2,s3
,...,sn . The binary disk model and the probabilistic sensor 
model (Zhu et al. 2012) are the most common models for 

Table 1  Comparison among different state-of-the-art techniques

Factors Coverage Connectivity Minimum 
number of 
nodes

Power Advantages Disadvantages

ABC (Öztürk et al. 
2012)

✓ ✗ ✗ ✗ Increase the coverage  of the 
monitoring area

Didn’t ensure network connec-
tivity

High power consumption
Immune algorithm 

(Abo-Zahhad et al. 
2014)

✓ ✗ ✗ ✓ Increase the area coverage Maximize network cost
Minimize the redundant 

area between sensor nodes
GA (Gupta et al. 2016) ✓ ✓ ✓ ✗ Ensure k-coverage and m-con-

nectivity with minimum 
number of sensor nodes

Suitable for target based-WSNs 
not for random deployment

Harmony search 
(Moh’d Alia and Al-
Ajouri 2017)

✓ ✗ ✓ ✓ Maximize area coverage with 
less number of sensor nodes

Designed only for deterministic 
deployment

Didn’t ensure network connec-
tivity

SA (El Khamlichi et al. 
2017)

✓ ✓ ✓ ✗ Solve area and barrier coverage 
with the minimum number of 
sensor nodes

Complex and maximize process-
ing time

WOA (ÖZDAĞ and 
CANAYAZ 2017)

✓ ✗ ✓ ✗ Maximize area coverage with 
less number of sensor nodes

Didn’t ensure network connec-
tivity

More stable High processing time
Firefly (Tuba et al. 

2017)
✓ ✗ ✗ ✓ Increase area coverage Increase network cost

Minimize nodes’ power con-
sumption

CSPAC (Elma and 
Meenakshi 2019)

✓ ✓ ✓ ✓ Improve coverage and con-
nectivity

Not suitable for random deploy-
ment with mobile nodes

Minimize the number of active 
nodes

CSPAC (Musa et al. 
2019)

✓ ✓ ✗ ✓ Ensure network connectivity Complex
Maximize network lifetime
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representing the coverage of sensor nodes in WSNs. Binary 
disk model is used in this paper that considers the sensor 
such as a sensing disk with radius rs as its sensing range. 
Any grid point is said to be covered if and only if it is within 
the sensing range of the sensor. Assume that there is a sen-
sor si deployed at (xi, yi) , and a grid point p located at (x, y), 
the Euclidean distance between grid point p and sensor si is 
defined as:

Where i ranges from 1 to Ns and Ns represents the number 
of deployed sensor nodes in area A.

Equation 2 (Zhu et al. 2012) denotes the binary disk 
model that represents the probability p(x, y, si) of a grid point 
p is covered by sensor si.

3.1  Derivation of the objective function

A multi-objective function consisting of the coverage ratio 
and the number of nodes is derived. First of all, nodes loca-
tions that will be randomly deployed are bounded by the 
lower and upper boundaries of the target monitoring area. 
They defined according to Eqs. 3, 4 and 5 as follows:

where lb, ub(M,N) represent lower and upper bounds of the 
area under consideration. Also, M and N are the width and 
the height of the target area, Ns is the number of sensor 
nodes and rs represents the sensing range of the sensor node.

3.2  Coverage ratio

The probability that a grid point p(x, y) is covered by the set 
of sensor nodes S can be written as:

The total percentage of the coverage area (Cov) is given by:

(1)d(si, p) =

√

(

xi − x
)2

+
(

yi − y
)2

(2)p(x, y, si) =

{

1, if d(si, p) < rs;

0, otherwise;

(3)lb ≤xi ≤ ubM where i = 1, 2.....Ns.

(4)lb ≤yj ≤ ubN where j = 1, 2.....Ns.

(5)lb =
rs

2
, ubM = M −

rs

2
, ubN = N −

rs

2
.

(6)p(x, y, S) = 1 −

Ns
∏

i=1

(1 − p(x, y, si))

(7)COVpercentage =

∑M

x=1

∑N

y=1
P(x, y, S)

M × N

Where M × N is the total area size.
The goal of the proposed technique is to maximize area 

coverage ( f1 = COVpercentage).

3.3  Number of deployed sensor nodes

The second goal of the proposed technique is to achieve 
maximum area coverage with a minimum number of 
deployed nodes. The number of sensor nodes is defined 
between the upper and lower bound of a predefined range. 
Those bounds are defined according to Eq. 8:

where Ns is the number of deployed nodes and Ls , US are the 
predefined lower and upper bounds respectively. Therefore, 
the second goal is to minimize the number of deployed sen-
sor nodes in the area under consideration as defined in Eq. 9.

3.4  Overlapping area between sensor nodes

Minimizing the number of sensor nodes contributes to sig-
nificantly reducing the overlapping area between nodes. 
Figure 2 describes two sensors s1 and s2 overlapped a point 
p(x, y). The probability that the two sensors si and sj to over-
lap grid point p(x, y) is given by:

Where d(psi),d(psj) are Euclidean distance between sensors si , 
sj and the grid point p that is given by:

Where i, j=1,2,....,Ns,i ≠ j.

(8)Ls ≤ Ns ≤ Us

(9)f2 = 1∕Ns

(10)POverlap(x, y, si) =

{

1, if dpsi < rs and dpsj < rs, i ≠ j;

0, otherwise;

(11)
dpsi =

√

(

x − xi
)2

+
(

y − yi
)2
, dpsj =

√

(

x − xj
)2

+
(

y − yj
)2

Fig. 2  Overlapping region between two sensors s
1
,s
2
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The redundant covered area percentage (RED) of nodes 
in the target area is defined as:

To verify the effect of including the minimization of the 
number of sensor nodes on reducing the overlapping area in 
the proposed objective function, simulation with different 
parameters is performed. Simulation with area 50 × 50 m2 , 
rs=10 m, and Ns=20 is used for this purpose. The first simu-
lation is tested without minimizing the number of sensor 
nodes as described in figure 3a. It is observed from Fig. 3a 
that eliminates the number of sensor nodes from objective 
function, result in maximizing the number of deployed sen-
sor nodes to achieve full coverage. It requires 17 nodes to 
achieve 100 % coverage with an overlapping percentage of 
68.24 %. While another simulation requires only 12 nodes 
when comprises the number of sensor nodes in the objec-
tive function. This achieves 99.76 % coverage for the same 
area with an overlapping percentage of 34.72 % as shown in 
Fig. 3b. That is means that, including minimizing the num-
ber of sensor nodes contributes to minimizing the network 
cost and overlapping percentage area with 25 % and 49.12 
% respectively.

It is worth mentioning that maximizing area coverage 
required a large number of nodes. However, minimizing the 
number of deployed nodes is the main factor of this paper. 
So, these two objectives are conflicting with each other. 
The objective function is built in the way to integrate those 
objectives using the weight sum approach (WSA) (Gupta 
et al. 2016). WSA is used for solving multi-objective opti-
mization problems by multiplying preference w with each 
objective and make a summation of all objective terms to 
get the final objective value as shown in Eq. 13. Due to its 

(12)REDarea(f2) =

∑M

x=1

∑N

y=1
(
∑Ns

i=1
POverlap(x, y, si))

M × N

simplicity, WSA is used with less computational complexity 
and low network overhead.

Where w1 , w2 are the weight values and w1+w2=1.
To summarize this section: 

Objective function

Objective
   Maximizing the area coverage percentage ( f

1
)

   Minimizing the number of deployed nodes ( f
2
)

Subject to
   Minimizing the overlapping area between nodes.
   Ensuring 1-connectivity between sensor nodes.

If the constraints are violated, the objective function will 
be assigned penalties.

3.5  Connectivity between sensor nodes

Sensor nodes communicated with each other via commu-
nication range ( Rc ) for exchanging data until reaching the 
sink. This is called connectivity, where the network said to 
be connected if and only if there is at least one path (k = 1) 
between each sensor node and the sink. Moreover, if there 
are multiple and different paths between each sensor and the 
sink, this is called k-connectivity where k > 1 (Farsi et al. 
2019; Zhu et al. 2012). For simplicity, the two sensors si and 
sj are connected if the Euclidean distance between si and sj 
[ d(si, sj) <= Rc ] as described in Eq. 14.

(13)Z = w1 × f1 + w2 × f2

(14)

Con(si, sj) =

{

1, if

√

(

xi − xj
)2

+
(

yi − yj
)2

<= Rc, i ≠ j;

0, otherwise;

(a) (b)

Fig. 3  The effect of minimizing the number of sensor nodes on reducing the overlapping area
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where RC = 2 ∗ rs , and according to Eq. 13, the proposed 
technique has verified connectivity between sensor nodes to 
be 1-connectivity by adding a penalty to the objective func-
tion that ensures (k = 1) . Figure 4 shows the relationship 
between RC and rs.

3.6  Plan of the solution

The following assumptions regarding sensor nodes are fixed 
in the proposed technique:

– All sensor nodes are homogeneous (have the same sens-
ing range).

– There are two dimensions of the target A with width M 
and height N, and it is assumed to be an obstacle-free 
region.

– All sensor nodes are aware of their location via GPS or 
another device for location determination

– All nodes can move within their range of mobility to 
other locations.

Steps for solution are summarized as follow:

– Initially randomly deploy nodes within the boundaries of 
the area (initial population)

– Select a row from the population as a candidate solution 
(selection of parents to produce children)

– Apply a modified two-point crossover to enable variable-
length encoding for each parent.

– Perform mutation
– Calculate objective function (maximizing coverage and 

minimizing the number of sensor nodes with overlapping 
and 1-connectivity constrains)

– Update population for the next generation
– Get the best solution as final nodes coordinates

The details of the proposed technique will be discussed 
extensively in the next section.

4  Proposed dynamic deployment technique 
using Genetic algorithm(IDDT‑GA)

The most important characteristics of GA compared to other 
state-of-the-art techniques are (Sivanandam and Deepa 
2008):

Firstly, GA combines different solutions to boost the 
best one that provides a variety of potential solutions. This 
variety results from the crossover stage. Secondly, the 
algorithm’s solidity should also be stated as something an 
essential parameter to the success of the algorithm. Solidity 
means the ability of the algorithm to resolve a wide range 
of problem types well consistently. Thirdly, GA is simple to 
implement and has a small computational cost. Also, it has 
a good compromise between exploration and exploitation. 
Finally, according to No Free Lunch theorem (Wolpert and 
Macready 1997), no optimization algorithm outperforms any 
other algorithm for all problems, but an algorithm performs 
well in a specific application. All of these features make a 
genetic algorithm is a powerful tool for the optimization 
process.

The proposed IDDT-GA is detailed in this section. Fore-
most, all nodes are deployed randomly within the target 
area. Then, the population matrix is generated which each 
row represents a candidate solution. Each row has several 
columns that determined based on the number of deployed 
nodes. These columns contain randomly generated positions 
of the sensor nodes within a predefined range as described in 
Eq. (5). A variable-length encoding is used to construct each 
row. Each row has a variable length for a different number 
of sensor nodes, which are created within range as shown 
in Eq. 8. Therefore, a candidate solution has chosen from 
the population. After that, performing GA steps including 
selection, crossover, and mutation until reach termination 
conditions and get the best value for the fitness function. 
Finally, get final nodes locations and calculate coverage ratio 
for the area under consideration. A comprehensive descrip-
tion of GA steps is outlined in subsections 5.1 to 5.3 below. 
Algorithm 1, illustrates steps for the proposed technique. 

Fig. 4  Sensing range (r
s
) and communication range (R

C
)
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Fig. 5  Chromosome representation

4.1  IDDT‑GA—initial population

The initial population is created as a matrix in which each 
row represents a chromosome. Each row has a set of col-
umns that represent randomly generated positions of sen-
sor nodes. Each chromosome has a variable row length lc 
which equal to the double of the randomly generated num-
ber of sensor nodes ( lc =2 × Ns ). The first half of the chro-
mosome represents x coordinates for nodes, while the last 

one represents node’s y coordinates as described in Fig. 5. 
Algorithm 2, shows in detail the generation of the initial 
population matrix.
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4.2  IDDT‑GA—selection

Selection is an important process within the genetic algo-
rithm. It is used to select parents for the next generation. 
Individuals that have better objective value have a bet-
ter chance to be selected as parents to produce offsprings 
through crossover operation. There are many selection meth-
ods as rank selection, roulette-wheel selection, stochastic, 
tournament selection, etc. (Gupta et al. 2016). The proposed 
technique uses a roulette-wheel selection.

4.3  IDDT‑GA—crossover and mutation

Crossover is the exchange between two parents (parent/indi-
vidual: Each row has a variable length that equals to the 
double of the randomly generated number of sensor nodes. 
The first half of the row represents x coordinates for nodes, 
while the last one represents the node’s y coordinates) to 
produce child individuals for the next generation. A modified 
two-point crossover is presented for representing individuals 
with the notion of adaptive length encoding to demonstrate 
a variable set of sensor nodes. Initially, each row (parent) is 
divided to isolate the x coordinates and the y coordinates. 
Then, two crossover points are randomly selected for the first 
parent (x and y coordinates) within its length according to 
Eq. (15). For the second parent, the two points are selected 
relative to the points of the first parent, but within the range 
of the second parent’s length as defined in Eq. (16). After 
that, the parents’ chromosomes swap the parts between the 
two points.

Where CrossPoint(P1)1 and CrossPoint(P1)2 are the first 
and second cross points for the first parent respectively, and 

(15)CrossPoint(P1)1,2 = round((ub1 − lb) ∗ rand() + lb)

CrossPoint(P1)1 < CrossPoint(P1)2 . Besides, ub1 is the length 
of the first parent and lb is the lower bound of the first par-
ent’s length that equals 1. We can calculate the cross points 
for the second parent based on the following:

Where CrossPoint(P2)1 and CrossPoint(P2)2 are the first and 
second cross points for the second parent, and ub2 is the 
length of the second parent. Figure 6 shows an example of 
an improved two-point crossover.

As shown from Fig. 6, the first parent has a length of 
20. The first ten values represent x coordinates of sensor 
nodes while the last values correspond to y coordinates of 
sensor nodes. With the same concept, the second parent has 
a length of 14 represents x and y coordinates for 7 sensor 
nodes. Based on Eq. 15, the first and second cross points for 
the first parents are generated randomly at locations 3 and 
8 respectively. After that, relative to Eq. 16 points 2, 7 are 
cross points for the second parent. Finally, following swap-
ping the parts between the two parents, child 1 with length 
18 and child2 with length 16 are produced.

Mutation (Kramer 2017) provides diversity in the search 
space. It creates small changes in individuals and creates a 
mutated child. It occurs according to a user-defined mutation 
rate Pm during the evaluation process. This rate is usually set 
to low. If it is set too high, the search will turn into a random 
search space. A gaussian mutation is used, which adds a 
random number taken from Gaussian distribution with mean 
0 to each element of the parent vector.

(16)
CrossPoint(P2)1 =

ub2 ∗ CrossPoint(P1)1

ub1
,

CrossPoint(P2)2 =
ub2 ∗ CrossPoint(P1)2

ub1
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5  Simulation results and comparisons

To prove the validity and superiority of the proposed deploy-
ment technique, it has implemented using MATLAB 2014 
X64 on a system with Core (TM) i5, 2.6 MHZ, 6 GRAM, 
windows 7 as a platform. The target area is considered as 
mentioned above to be M ∗ N grid points. So, the number 
of grid points need to be covered equally to M ∗ N  . Ini-
tially, sensor nodes deployed randomly, with sensing range 
rs . The proposed technique is compared to three related 
works CM-IA (Abo-Zahhad et al. 2014), HS-based deploy-
ment (Moh’d Alia and Al-Ajouri 2017) and MADA-WOA 
(ÖZDAĞ and CANAYAZ 2017) because they are the most 
recent techniques related to minimal cost coverage and cited 
by different research works. Different area size M ∗ N , sens-
ing range rs and the number of nodes Ns is used for simula-
tion for similarity conditions with related works. Table 2 
shows the simulation parameters used for comparisons with 
related works. For simulation, different values for preference 
weight w1 , w2 were tested. It is observed from Table 3 that 
w1 = 0.7 and w2 = 0.3 has good comprise for both coverage 
and the number of deployed nodes. As they achieve maxi-
mum coverage with the minimum number of sensor nodes 
and acceptable overlapping rates. In addition, the proposed 

technique considered crossover probability Pc = 0.7 (Mnasri 
et al. 2015) and mutation probability Pm = 0.01 (Kalayci 
et al. 2007).

First of all, IDDT-GA is compared with coverage maxi-
mization with minimum cost using HS-based deployment 
(Moh’d Alia and Al-Ajouri 2017). For this purpose, area 
size 50 × 50 m2 and 100 × 100 m2 is used with rs = 10 m. 
To eliminate the simulation error due to randomization, this 
simulation was run for 10 independent runs and the average 
of results is estimated.

It is shown from Table 4 that, IDDT-GA outperforms 
HS-based deployment in terms of coverage ratio with the 
minimum number of nodes. For area 50 × 50 m2 , the pro-
posed technique requires only 13 nodes for 99.75% area cov-
erage while the last covered 96.8 % of the target area with 
15 nodes. Also, for a large area 100 × 100, the proposed 
technique covers 97.25 % of the target area with only 45 
sensor nodes. However, HS-based deployment requires 50 
nodes for covering 86.69 % of the target area. It is shown 
from Fig. 7 that IDDT-GA has better coverage rates and 

Fig. 6  Improved two-point 
Crossover example

Table 2  Simulation parameters

Parameters Values

Area size ( M ∗ N) 50, 100
Sensing range ( r

s
) 5–10

Number of sensor nodes ( N
s
) 4–100

Population size ( P
s
) 30

Number of iterations (ITR) 500
Crossover probability ( P

c
) 0.7

Mutation probability ( P
m
) 0.01

Table 3  Different weight values for coverage rates, the number of 
sensor nodes ,and overlapping rates for 5 =< N

s
<= 10

w
1

w
2

Coverage ( f
1
 ) % Ns ( f

2
) Overlap-

ping area 
%

0.9 0.1 93.6 9 14
0.8 0.2 93.94 9 12
0.7 0.3 93.05 8 8
0.6 0.3 93.19 9 13
0.5 0.5 92.38 8 7
0.4 0.6 88.72 8 8
0.3 0.7 82.61 7 5
0.2 0.8 67.13 5 0.32
0.1 0.9 64.24 5 0.28
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minimum overlapping ratio with 9.69 % and 35.43 % (on 
average) compared to HS-based deployment respectively. 
HS-based deployment was designed for a deterministic 
deployment technique with a limited number of grid points. 
However, in this paper network is designed for random 
deployment that has better coverage for a large and small 
number of grid points with a minimum number of nodes. 
Besides, IDDT-GA is always stable and reliable as it has a 
small standard deviation over most of the runs beside it has 
fast convergence as shown in Fig. 8. IDDT-GA contributes 
to minimizing STD values with 90.83 % for an area with size 
50 × 50 m2 and 19.68 % for an area with the size 100 × 100 
m2 compared to HS-based deployment. Figures 9 and 10 
show nodes distribution with the proposed technique and 
HS-based deployment for a different number of nodes.

In addition to the above, IDDT-GA is compared with 
CM-IA (Abo-Zahhad et al. 2014). The same amount of sen-
sor nodes and field size is endorsed. In other words, the num-
ber of nodes varies between 20 and 60 in the same area field 
of 50 × 50 m2 with sensing range rs =5 and 7 m. This simula-
tion was run for 10 times and the average is calculated. It is 
observed in Table 5 that compared to CM-IM, IDDT-GA has 
approximately the same coverage rates with the minimum 
number of sensor nodes. Besides, IDDT-GA contributes to 
minimizing the network cost (the number of sensor nodes) 
by 13 % on average compared to CM-IA. Also , IDDT-GA 

improved the overlapping area between nodes by 65.80 % 
than CM-IA as shown in Fig. 11. Along with all simulations, 
IDDT-GA has small STD values 0.0178, 0.0056 and 0.0117 
for Ns=20, 60 and 23 respectively, that confirms its stability 
and superiority. Figure 12 describes nodes distribution with 
IDDT-GA using a different number of nodes. Although we 
must mention that for areas with a lower number of nodes 
that do not satisfy maximum coverage conditions, some 
nodes could not meet connectivity requirements. Because 
of the minimum number of nodes that could not cover the 
area efficiently as shown in figure 12a.

Table 4  Comparison between HS-based deployment (Moh’d Alia and Al-Ajouri 2017) and IDDT-GA

Area Ns HS-based deployment IDDT-GA

M − N L
s
− U

s
Coverage % Overlapping % N

s
STD Coverage % Overlapping % N

s
STD

50 - 50 4–10 88.38 29.4 10 0.0161 90.83 6.8 8 0.0176
50 - 50 10–15 96.8 53.76 15 0.0084 99.75 42.04 13 0.00077
100 - 100 20–30 69.92 20.43 30 0.013 81.74 5 28 0.0111
100 - 100 30–50 86.69 46 50 0.0097 97.25 33.67 45 0.0073

(a) Overlapping rates for 50∗ 50 m 2 (b) Coverage rates for 50 ∗ 50 m 2

Fig. 7  Difference between IDDT-GA and HS-based deployment in terms of the number of sensor nodes, coverage rates, and overlapping rates

Fig. 8  IDDT-GA Convergence for 50 × 50 m2 and 100 × 100 m2
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Finally, the performance of IDDT-GA is compared with 
MADA-WOA (ÖZDAĞ and CANAYAZ 2017). For this 
purpose network with size 100 × 100 m2 is considered and 
rs = 7 , which have set of randomly deployed mobile sensor 
nodes in the range 20-100 sensor nodes. This simulation 
was run for 5 independent runs and the average of results is 
calculated. As can be seen from Table 6, the performance 
of the IDDT-GA is compared to MADA-WOA in terms 
of coverage ratio with a different number of sensor nodes. 
IDDT-GA covered 30.07 % of the target area with only 19 
nodes while MADA-WOA required 20 nodes for covering 
29.2 % of the area. IDDT-GA has improved the network cost 
(minimum number of nodes) by 7.44 % than MADA-WOA 
because IDDT-GA has similar coverage rates with a mini-
mum number of sensor nodes compared to MADA-WOA 
as described in Fig. 13a. Besides, the proposed technique 
is more stable than MADA-WOA, as it always has a small 

standard deviation value. This means that, coverage rates 
at all iterations are close to each other and that it has fast 
convergence than MADA-WOA. IDDT-GA contributes to 
minimizing STD values with 83.04 % compared to MADA-
WOA. Figure 13b shows standard deviation values for both 
algorithms with the number of sensor nodes. Nodes distri-
bution for this simulation with IDDT-GA is described in 
Fig. 14.

6  Conclusion and future work

This paper introduced an Improved Dynamic Deployment 
Technique based on the Genetic Algorithm (IDDT-GA) for 
maximizing area coverage. This technique was designed to 
maximize the network coverage by reducing the number 
of sensor nodes in the random deployment. The IDDT-GA 

(a)

(c) (d)

(b)

Fig. 9  Node distribution with IDDT-GA and HS-based deployment for area size 50 × 50 m2
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was introduced in this work as the promising solution not 
only to demonstrate the notation of variable-length encod-
ing through an improved two-point crossover but also to 
guarantee 1-connectivity between sensor nodes.

In the simulation results, the proposed technique was 
confirmed its superiority and efficiency as it has better cov-
erage rates and the minimum overlapping ratio with 9.69% 
and 35.43% compared to HS-based deployment. Moreover, 

IDDT-GA was contributed to minimizing the network cost 
and the overlapping area between nodes by 13% and 65.80% 
than CM-IA. It also demonstrates its stability and reliability 

(a) (b)

(c) (d)

Fig. 10  Node distribution with IDDT-GA and HS-based deployment for area size 100 × 100 m2

Table 5  Comparison between CM-IA (Abo-Zahhad et  al. 2014) and 
IDDT-GA

Common parameters IDDT-GA CM-IA

N
s

Coverage % N
s

Coverage %

M = 50 , N = 50 , r
s
= 5 19 62.51 20 62

48 98.28 60 99.4
M = 50 , N = 50 , r

s
= 7 20 96.45 23 97.4

Fig. 11  Overlapping rates for IDDT-GA and CM-IA
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as opposed to other techniques, it usually has small STD 
values. Although the effectiveness of the IDDT-GA was 
investigated in the simulation results in terms of minimiz-
ing the network cost and maximizing the coverage area, the 

development is still required in future work by applying 
IDDT-GA with a probabilistic detection model and power 
consumption reduction.

(a) (b)

(c)

Fig. 12  Nodes distribution with different number of nodes N
s
 and sensing range r

s
 for 50 × 50 m2

Table 6  Comparison between 
MADA-WOA (ÖZDAĞ 
and CANAYAZ 2017) and 
IDDT-GA

MADA-WOA IDDT-GA

N
s

Coverage % STD N
s

Coverage % STD

20 29.2 0.01 19 30.07 0.0047
60 78.55 0.3 55 77 0.0064
100 95.4 0.36 91 95.32 0.0063
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(a) (b)

Fig. 13  Coverage rates and standard deviations for proposed IDDT-GA and MADA-WOA

(a) (b)

(c)

Fig. 14  Nodes distribution with a different number of nodes N
s
 for 100 × 100 m2
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